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Abstract: The article covers the expansion of harmonic waves in the deformable wedge. A spectral 
problem is formulated, which is solved numerically. The article reports the development of the method 
for solving the problem, the action of elastic wave on cylinder with a radial crack by limiting case of 
wedge with angle of 360° on bodies (shell) located in infinite linear-elastic medium, as well as its 
algorithms. Closed system of differential equations, as well as the corresponding initial and boundary 
conditions have been drawn. Obtained analytical results have theoretical and applied significance. 

 

 

Introduction. The article reports the development of the method for solving the problem, the action of elastic 

wave on cylinder with a radial crack by limiting case of wedge with angle of 360° on bodies (shell) located in 

infinite linear-elastic medium. Elastic cylinder with a radial crack is the limiting case of wedge with an angle 

of 360° [1].  

Three groups of relations specify the main equations of motion of elastic medium occupying region B 
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The tilde denotes the operation of transposition of square matrix; Ê is unit tensor of the second rank; elastic 

moduli, called Lame constants;   and   are complex value. If 0 , then    and    are real numbers 

(Lame constants) [1, 2, 8]. In a cylindrical coordinate system, equations (1), (2), (3) have the form 
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Where zzzzrrrr



,,,,, are the stress tensor components respectively; 

zzzzrrrr



,,,,, are the components of the strain tensor respectively. The relationship 

between stresses and strains is given in the second chapter (6). Relations (4), (5), (6) after identical algebraic 

transformations are reduced to a system of six differential equations solved with respect to the first derivative 

with respect to the radial coordinate 
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where the following notations are introduced 
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boundary conditions set in the form: 
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Periodicity conditions allows eliminating the dependence of the main unknowns on time and the axial 

coordinate z using the following change of variables: 
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Under condition (8), separation of the variables r and φ is impossible. Considering (9), the system of 

equations (7) takes the form: 
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The boundary conditions are transformed similarly (8) 
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Then, considering the first equation of system (12), boundary conditions (11) take the form: 
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Boundary-value problem for the system of equations in frequency derivatives (13) is solved by differential 

equations using the method of straight lines, which will allow using the software apparatus of the orthogonal 

marching method in the solution. According to the method of straight lines, the rectangular domain of 

definition of the function of the main unknowns is covered by straight lines parallel to the r axis and evenly 

spaced from each other (Fig. 1) [5,6,11]. 

The solution is sought only on these straight lines, and the derivative in the direction φ is replaced by 

approximate finite differences. The second-order approximating formulas used for the first and second 

derivatives have the form: 
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where i changes from 0 to  1,01  NiN , iy  is the projection of unknown function onto the line with the 

number i; Δ is step of partition along the coordinate φ 

Because of discretization, the vector of main unknowns of total dimension 6N can be written as: 
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Therefore, the initial spectral problem (10), (11) with the help of discretization of the coordinate φ by the 

method of lines is reduced to the canonical problem (16), for the solution of which the used method of 

orthogonal marching is applied. Table I shows the limiting values of the phase velocity of the first edge mode 

depending on the angle of the wedge at the apex (in terms of the thickness of the wedge at the base h2) 

(column 1), found for the material with Poisson coefficient υ = 0.25 according to the theory of Kirchhoff-

Love plates (column 2) [8, 13, 19], Timoshenko (column 3), in frame of the method for calculating a three-

dimensional wedge set out in this article (columns 4-5) and by the formula  mСC ч sin0   [12,16,19], m = 

1, 2, …, mφ < 90°  (column 6). Column 4 corresponds to the design option with three internal straight lines (N 

= 3) and boundary conditions (8), column 5 corresponds to the boundary conditions: 

 

with the same number of lines. In accordance with the numerical results, and given in Table 1, the calculation 

options using the Kirchhoff - Love, Timoshenko and three-dimensional theory methods agree with each other 

within 7% for wedge angles with a base thickness h2 not exceeding 0.5 (wedge angle φ0 = 28 °). 
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localization of the vibration mode near the acute angle of the wedge, described in [12]. This phenomenon 

should be considered as a characteristic feature of the dynamic behavior of a plate of variable thickness. 

                     

Fig. 1. Design diagram 

Based on the results obtained, the following conclusions were drawn.: 

results of calculating the limiting velocity of expansion of the first mode in a wedge-shaped waveguide 

according to the theory of Kirchhoff - Love plates and according to the dynamic theory of elasticity differ by 

no more than 6% for the angles of the wedge apex not exceeding 
00 9028  . As a result, the 

calculations differ by up to 20%. [12, 18, 19] 

Table 1 

I2   0 K/A T 3(1) 3(2) A 

0.2 110 0.2 0.196 - - 0.182 

0.3 170 0.3 0.286 0.308 0.298 0.276 

0.5 280 0.5 0.442 0.475 0.462 0.433 

0.7 380 0.7 0.563 0.605 0.592 0.574 

1 530 1 0.691 0.741 0.729 0.736 

2 900 2 0.864 0.908 - 0.92 
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