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Abstract: In such cases it is necessary to construct exact quadratic formulas, as there are some errors 

in the approximate calculation of specific or non-specific integrals whose first-order derivatives 

become infinity in a given interval. In this work, the multiplicative method of loss of specificity under 

the integral of integral or non-specific integrals in which the first-order derivatives become infinity in a 

given interval is considered. 
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The problem of approximate integrals derived from a function with a finite number of products in the 

integration interval is well described in the mathematical literature. It is not possible to approximate the 

integral or non-specific integrals, one of the first derivatives of which is infinity, because it can give gross 

errors. Therefore, it is necessary to construct as accurate quadratic formulas as possible for such integrals. One 

such method is the multiplicative method, which allows you to get rid of the special under the integral. 

Here is the essence of the multiplicative method. 

Suppose, in the integration interval 
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Let the ( )xϕ  function under the integral have some speciality. Suppose a function  

( ) ( ) ( )xfxx ωϕ =  

be able to write in the form, where ( )xω is a positive function that contains all of the given properties, and 

( )xf  is a (smooth) function with no special properties and 2n is an ordered product [2]. Using this, we can 

use Gauss's formula for the above integral (1) [3]:  
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while its residual hadi 
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determined by the formula. Here, the function ( )x
n

ω~  is a polynomial of degree n, 
( )n

k
x is the root of ( )x

n
ω~ , 

and 
( )n

n
A  is the coefficient of formula (2), which are:  
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The following properties are appropriate for these coefficients: 
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2. All 
( )n

k
A  coefficients are positive. 

Thus, for the calculation of nonlinear integrals in a multiplicative way, all the properties of the integral are 

loaded into a weighted function, the corresponding orthogonal polynomial is restored, their nodes 
( )n

k
x  are 

found, and 
( )n

k
A  are the coefficients[1]. 

Below we have a weighted function 

( ) ( )11,ln +≤≤−−= xxxω  

We take the function and use the multiplicative method. 

In section ]1;1[− , we construct polynomials ( )x
n

ω~ , which are orthogonal to the weights 

( ) ( )11,ln +≤≤−−= xxxω , and have the largest coefficients equal to one. 

If we use the pair of the function ( ) xx ln−=ω  in ]1;1[− , the polynomials ( )x
n

ω we are looking at are at 

level 
k

x , so that the rank indicator comes with n only in pairs. 

( )x
n

ω  polynomials from polynomial theory 
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is found in the recurrent formula [1]. 
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Based on the property of orthogonality 
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become, hence 
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Is derived. Let's split this integral down, 
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=λ , and then we find the ( )
9

1~ 2
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−= xxω polynomial. That's the 

way we look at ( )xω~ . (4) based 
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From the condition of orthogonality 
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from a pair of functions under the integral 
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Let's break it down and integrate it, 
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That is, according to (4) 
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From the condition of orthogonality 
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we define. In this way, the appearance of ( )x
n

ω~  polynomials 
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we define. Our next goal is to find the roots of the polynomials ( )x
n

ω~  found. To do this, using the 

Lobachevsky-Gref method, we find the roots of the polynomial ( )x
n

ω~ . The coefficients of the constructed 

approximate formula are.  
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found using formula [1]. 

Table 1. 

n  
( )n

k
x  

( )n

k
A  

( )n

k
Alog  

1 0 2 0,3010300 

2 
3/1−  1 0 

3/1+  1 0 

3 

5/3−  308642,081/25 =  4894550,1  

0 382716,181/112 =  1407330,0  

5

3+  308642,081/25 =  4894550,1  

4 

-0,748296 

-0,224042 

0,221042 

0,629296 

0,135100 

0,864900 

0,864900 

0,135100 

1303008,1  

9369658,1  

9369658,1  

1303008,1  

5 

-0,809432 

-0,420490 

0,000000 

0,420490 

0,809432 

0,064942 

0,387768 

1,094580 

0,387768 

0,064942 

8125257,2  

5885720,1  

0,0392476 

5885720,1  

8125257,2  

Based on the algorithm in the calculation, the calculation process of Table 1 was developed using high-level 

algorithmic languages (Delphi, Maple7), the roots of which are defined to 6 rooms.  

Conclusion: Based on the above algorithm, the process of calculating specific or non-specific integrals whose 

first-order derivatives become infinity in a given interval by multiplication is carried out without loss of 

specificity under the integral. 
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