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Abstract: Modeling the flow of two-phase compressible fluids through porous media is very 

pertinent to a broad spectrum of physical and technical applications. The study focuses on 

reservoir modeling and oil and gas production, which require the use of advanced numerical 

methods to ensure efficiency. The objective is to achieve a numerical solution to this model by 

integrating finite element and finite volume approaches. This involves generating velocity values 

at the boundary of the finite volume grid cells based on point pressure values at KE nodes.  
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1. Introduction 
The study of multiphase flow in porous media is a highly dynamic area of research. This discipline 

investigates various practical fluid dynamics scenarios, including groundwater contamination, oil 

and gas extraction, and CO2 storage in geological formations. Due to the significant interest in 

multiphase flow in porous media, numerous studies have been conducted in this field. Some 

notable references, including [1, 10, 11], have been published on this topic. This work focuses on the 

mathematical and numerical modeling of underground flow in water-oil systems. In this scenario, 

the fluid in motion often consists of a blend of oil, water, and gas flowing through a permeable 

substance as a result of the interconnected network of pores within the geological medium. The 

prevailing mathematical models used to depict these types of problems consist of a set of parabolic 

partial differential equations. These equations describe the pressure and saturation of the various 

phases present in the process, specifically known as the Black-Oil model. 

Several modeling tools employ finite difference methods or finite element approaches to solve 

mathematical models [10]. The user mentions the use of finite element methods, sometimes known 

as [10]. Additional formulations of finite volume methods and combinations of finite element and 

finite volume approaches can be found in existing literature. The model explores strategies, as seen 

in Eq. [4], that includes transforming a parabolic FVM system into a system consisting of an elliptic 

equation for pressure and a hyperbolic equation for saturation. The second equation bears 

resemblance to the widely recognized Buckley-Leverett equation, which was initially presented in 

reference [9].. 

https://journals.researchparks.org/index.php/IJHCS
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The theoretical analysis of this formulation was developed in reference [2]. The intriguing 

aspect of this study involves the handling of the two-phase model by converting it into an elliptic-

hyperbolic system. The paper encompasses both the analytical investigation and the numerical 

solution [2]. In addition, a numerical solution of the simplified model is executed in reference [2]. 

The authors in [12] demonstrate the local existence and uniqueness of the classical solution for the 

hyperbolic-elliptic system that arises in the modeling of oil production processes. They achieve this 

by utilizing the Artzel-Askoli theorem. Another significant contribution on the presence and 

uniqueness of the solution in models of filtration of immiscible fluids in porous media. 

The elliptic equation, which represents pressure, and the hyperbolic equation, which 

represents saturation, are interconnected through the inclusion of saturation in the mobility 

coefficients of both equations. The numerical strategy employed in this model involves solving the 

pressure equation, which is the elliptic component of the model, using the finite element method. 

Additionally, the saturation equation, which is the hyperbolic part, is solved using a finite volume 

scheme. The rationale behind employing these two distinct approaches in the same problem stems 

from the fact that finite element methods were specifically designed for addressing elliptic (and 

parabolic) problems. However, they prove to be highly inadequate, particularly in their 

conventional formulation, when confronted with hyperbolic problems, especially those involving 

discontinuous solutions. Finite-volume techniques are effective in these specific scenarios as they 

can accurately propagate discontinuous solutions. This model calculates the pressure at the nodes 

where the domain is divided into smaller sections, and these nodes are then used as borders 

between the sections in the finite volume scheme. It is important to understand that the finite 

volume scheme relies on the use of integral mean values of the solution, namely the saturation in 

this case. Given the dependence of velocities at the cell borders on the pressure gradient, it is 

necessary to apply a reconstruction method by Darcy's law. This model employs a piecewise linear 

reconstruction, taking into account the scenario that minimizes the absolute value of the slope. An 

explicit Euler technique is used to perform the temporal integration for the hyperbolic equation. It 

is important to understand that this process is distinct from the standard IMPES method. In the 

classical method, both equations evolve and a pressure implicit scheme is employed, whereas an 

explicit formulation is used to address the saturation problem [4]. The study presents results for the 

single-phase scenario, where a parabolic equation is used to model pressure. Additionally, the 

study also presents results for pressure and saturation in the two-phase scenario. An elastic porous 

material saturated with a compressible fluid can be described using a collection of physical 

variables based on a specific parameter. The fluid flow in a porous medium can be conceptualized 

as a combination of two phases, namely liquid and elastic porous. Each phase can be distinguished 

by its unique set of state parameters. It is important to mention that in this context, we are 

examining processes where temperature variations are insignificantly tiny. Additionally, we are 

utilizing the isoentropic approximation of the model. The mixture element is characterized by the 

following state parameters:  

α1 - the volume fraction of the elastic medium;  ρ - the mass density of the mixture; 

c1 - the mass fraction of the elastic medium;  

in - the velocity of the mixture;  

wi - the relative velocity of the elastic porous medium concerning the liquid; Fij - the elastic 

deformation gradient of the mixture. 

The liquid's volume and mass fractions can be determined by calculating α2 = 1 − α1, and c2 = 1 

− c1, respectively. The parameters that describe the state of the mixture are connected to the state 

parameters of the phases through specific relationships. 

 
The variables ρ1 and ρ2 represent the mass densities of the elastic porous media and the 

liquid, respectively. These variables also correspond to the velocities of the respective substances. 
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Here we propose a model of two-dimensional test problems to validate the model. Given that the 

constitutive equations constitute a hyperbolic system of conservation laws, it is possible to directly 

utilize the conventional WENO-Runge-Kutta numerical method [9] to solve the two-dimensional 

form of these equations. The 2D version of the system of equations comprises 11 equations, which 

can be formally expressed as: 

 
Let U represent the vector of conservative variables. F(U) and G(U) denote the fluxes, whereas 

Q(U) represents the vector of source terms. Here, we utilize the identical approach for solving the 

initial boundary value problem. The Lax-Vendroff flux is employed for approximating the flux 

within the intercells, while the characteristic decomposition and linearized boundary conditions are 

utilized for estimating the flux at the border. It is important to consider that the pressure relaxation 

occurs immediately in this case, given that the size of the pore space is relatively modest. The 

numerical approach for handling the immediate pressure relaxation involves adjusting the phase 

volume fraction α1 and densities ρ1, ρ2 by solving the algebraic equation p1 = p2 after each time 

step for every grid cell. 

The equation of state of an ideal gas: 

 Where:    

p is the pressure, 

Vм - molar volume,  

R is the universal gas constant 

T - absolute temperature, K. 

Physical model 

An oil reservoir is a geological formation that contains a mixture of oil, water, and gas. 

Initially, the hydrocarbon reservoir is in equilibrium and contains reservoir fluids such as gas, oil, 

and water separated by gravity under no-flow conditions. 

When a well is drilled reaching the upper reservoir formation, this equilibrium state is 

immediately disrupted, hence the pressure at that particular location drops, gradually propagating 

in all radial directions from the well zone to the entire reservoir formation. The study of fluid 

motion in porous media is very complicated. Therefore, it is necessary to introduce some 

simplifying assumptions.  

Boundary conditions 

The following hypothesis is established in this model, given below. 

- The flow occurs in one dimension. 

- The fluids do not mix and their composition remains constant in time, so there is no mass 

transfer between phases. 

- The system is isothermal. 

- Capillary pressure is neglected. 

- Horizontal flow is assumed, so the effect of gravity is neglected. 

Blackoil model. The thermodynamic black oil model is one of the most widely used models 

in oil reservoir modeling. 

A hydrocarbon is often characterized by two components: a heavy component, known as oil, 

and a light component, known as gas. These components maintain a stable composition over time. 

Additionally, it is thought that there is no mass transfer between the phases, meaning that they do 

not mix. Under reservoir conditions, both components have the potential to dissolve completely or 

partially, depending on the pressure and temperature in the reservoir. This results in the formation 

of one or two phases, specifically liquid and gas. The Blackoil equations have the following 

components. - Conditions of thermodynamic equilibrium. 

An equation of state characterizes the fluid by its fundamental physical properties, as 

expressed by defining equations. 

The principle of Darcy's law governs the volume flow rates of a system, specifically the 
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conservation of momentum.  The mass conservation equation is applied to each component 

individually. The Black Oil model characterizes the reservoir under constant temperature 

conditions, where the fluid properties are solely determined by the pressure behavior within the 

reservoir. Hence, a table that illustrates the relationship between the change in data and the related 

pressure change over time would suffice. This table will specify the PVT condition for each phase 

[7]. 

The saturation pressure, represented as point 2 in the diagram, corresponds to the specific 

condition at which the initial gas bubble is generated during the process of saturation. Below the 

saturation point, the reservoir has two hydrocarbon phases: a liquid phase known as gas-saturated 

oil, and a gas phase which is the released dissolved gas. Once the saturation point is surpassed, the 

oil starts to emit dissolved gas, which then maintains a consistent concentration throughout the 

process. This gas is classified as degassed oil since the presence of dissolved gas does not have any 

impact on its behavior at a consistent temperature, which is always maintained below the critical 

point. When the pressure in the reservoir exceeds the saturation threshold, there is only one phase 

of hydrocarbon, specifically liquid oil. This oil is referred to as degassed oil or undersaturated oil 

because it is constantly exposed to pressure levels that exceed the saturation point, preventing the 

release of any gas from the oil [9]. 

Constructing a closed-loop model. The research focuses on a one-dimensional two-phase 

model, which is applicable in the field of reservoir modeling and oil recovery. Within the model, 

the reservoir contains solely oil and water as the active phases. The objective of this model is to 

elucidate the process of immiscible displacement of oil, wherein oil is propelled towards a 

producing well due to the injection of water into the reservoir. Oil and water are immiscible. The 

purpose of drilling an injection well is to uphold elevated pressure in the reservoir by introducing 

fluids, such as water or gas. This enables the displacement of hydrocarbons towards the well when 

the existing pressure difference between the reservoir and the wellbore is insufficient for 

uninterrupted hydrocarbon production. Developing a mathematical model that accurately depicts 

the fluid flow behavior in an oil reservoir is crucial. This model consists of a collection of nonlinear 

partial differential equations (PPCMs) [10, 11]. Optimizing the computations for fluid simulation is 

crucial to ensure both speed and accuracy. To accomplish this, one must select a maximum time 

interval that is sufficiently small to avoid compromising the accuracy of the simulation. The 

Courant-Friedrichs-Lewy criterion (CFL) is typically employed to determine the appropriate time 

interval Δt. According to this criterion, Δt should be selected in such a way that the displacement of 

the fluid particle does not exceed one spatial grid step Δh within Δt. 

Δ𝑡 =
Δℎ

�⃗⃗� 𝑚𝑎𝑥
 , 

where �⃗� 𝑚𝑎𝑥 – is the maximum velocity in the velocity field. 

One of the formulas for calculating �⃗� 𝑚𝑎𝑥 – looks like [3]: 

𝑣 𝑚𝑎𝑥 = max(|�⃗� |) + √Δℎ|𝐹 |, 

where max(|�⃗� |)is the largest modulo value of the velocity in the grid, and 𝐹   is the forces 

applied to the fluid. 

However, often 100% accuracy of the simulation is not that important, so it is considered that 

it is possible toobtainedhe time interval by a factor of 𝑘𝐶𝐹𝐿obtained by applying the criterion: 

Δ𝑡 = 𝑘𝐶𝐹𝐿
Δℎ

�⃗⃗� 𝑚𝑎𝑥
 . 

For example, in one of the papers [8], researchers were able to increase the value of the CFL 

criterion by a factor of 5 without harming the realism of the simulation. 

To explain what advection is, we can use the informal question "How will some quantity Q, 

whose changes are measured in our grid, change in Δt?". Formally, advection on the (n+1)-th time 

interval is described by the following function: 

𝑄𝑛+1 = 𝑎𝑑𝑣𝑒𝑐𝑡 (𝑄𝑛 , Δ𝑡,
𝜕𝑄𝑛

𝜕𝑡
). 

Hereinafter we will assume that 𝑄𝑛 is the value of Q at the 𝑛-м time interval. The algorithm 

for calculating advection is given below.  
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For each grid cell with indices i, j, k 

 Calculate -
𝑑𝑄

𝑑𝑡
 

 Calculate the position of 𝑄𝑖𝑗𝑘and store it in 𝑋  

𝑋 𝑝𝑟𝑒𝑣 = 𝑋 −
𝑑𝑄

𝑑𝑡
Δ𝑡 

Find the grid node nearest to 𝑋 𝑝𝑟𝑒𝑣, assign it the value 𝑄𝑖𝑗𝑘 

𝑄 = 𝑄𝑛+1 

Then the closed model has the form: 

||𝑃𝑖𝑗|| =  |
|

𝑞00 𝑞1 … 𝑞𝑖 … 𝑞𝑛 0

𝑅1 𝑞11 … 0 … 0 𝑅1
̅̅ ̅

… … … … … … …
𝑅𝑛 0 … 0 … 𝑞𝑛𝑛 𝑅𝑛

̅̅̅̅

0 0 0 0 0 0 1

|
|, where, q00=1 – qΣ 

 

This algorithm is a realization of Euler's explicit method, which is a numerical technique for 

solving differential equations.  The orange point is located within the cell where the calculation of 

advection is to be performed. This is accomplished based on the velocity field. Incorporating 

pressure in simulations is essential for several reasons. Firstly, it is necessary to maintain a constant 

volume of the fluid, taking into account the fact that the fluid is incompressible and ensuring that 

the rule of conservation of mass is not violated. To achieve this objective, the continuity equation 

has the following form: 

div = 0. 

The meaning of the equation is that in all faces (all_faces) of each cell the flux is the same and 

equal to zero: 

∑ 𝑓𝑙𝑢𝑥 = 0

𝑎𝑙𝑙_𝑓𝑎𝑐𝑒𝑠

 

To solve the problem, we need to solve the following equation: 

𝑢𝑛+1 =  𝑢𝑛 −
1

𝜌
∇p (1) 

where the unknowns are 𝑢𝑛+1 и ∇𝑝. 

If the fluid is incompressible, the divergence is zero. This can be written as: 

∇ ∙ 𝑢𝑛+1 = 0 (2) 

Given condition (2), which we apply to equation (1), we obtain the Poisson equation: 
1

𝜌
∇2𝑝 = ∇𝑢𝑛. 

To solve this equation, the finite difference method is used - a system of algebraic equations of 

the form is constructed based on the available differential problem: 

A𝑝 = 𝑑, 

where A is some matrix of coefficients, p is to be found. The system is most often solved by 

the conjugate gradient method, which is an efficient iterative method. After solving the Poisson 

equation, p can be substituted into equation (1) and the updated velocity field can be calculated. 

Special attention should be paid to the grid boundary nodes, which can be of two types: free 

surface (free surface - the fluid can move freely, p=0 ), solid wall (solid wall - the fluid cannot "flow" 

through it, and the velocity at the boundary is equal to the velocity at the rigid boundary in the 

direction of the normal n. For this purpose, the Neumann problem is solved: 𝑢𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ∙ 𝑛 = 𝑢𝑠𝑜𝑙𝑖𝑑 ∙

𝑛).  

If the pressure at the free surface is correctly described, the fluid will "splash" in the air. Rigid 

boundaries are the walls of the describing cube. 

Choosing values for the equations of state experiments The expression 〈〈𝜙, 𝜓〉ℂ = �̅�1𝜓1 +

�̅�2𝜓2 represents the Hermite form on ℂ2in this model. The scalar product on the complex vector 

space ℂ2is represented as 〈〈𝜙, 𝜓〉ℝ = 𝑅𝑒(〈𝜙,𝜓〉ℂ). On the real vector space ℝ3, the scalar product is 

denoted as 〈𝑢, 𝑣〉;. The notation |𝜓|2 = 〈𝜙, 𝜓〉ℝ_R is used to indicate the quadratic norm in the 

streamwise direction. The symbol ξ represents the divergence. The decreased Planck constant, 
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commonly known as the Dirac constant, is denoted by the symbol ħ. This model employs 

computations based on the theory of Discrete Exterior Calculus (DEC)[1]. The theory emerged as a 

result of the need to develop a functional framework for working with theories of different types of 

physical fields and various differential calculations. Generally, the DEC system bears resemblance 

to vector calculus, but with the inclusion of novel terminology. As an illustration, in this context, a 

scalar field is referred to as a 0-form. Allow us to review the fundamental principles of differential 

geometry as applied to surfaces (refer to Figure 5). A vector v is defined by its magnitude and 

orientation. The value α(v) represents the magnitude of the component of the vector v in the 

direction α. A (differential) 1-form is a linear function that maps a vector to a scalar quantity.  

Measurement of the relative permeability of phase 

The following algorithms utilize the Fast Fourier Transform (FFT) and its inverse, the Inverse 

Fast Fourier Transform. The authors of the research utilize the Fourier domain to conduct a portion 

of their calculations, employing the Fast Fourier Transform (FFT) and its inverse. Figure 6 illustrates 

the determination of relative phase permeability. The fluid is permeable on the far right, exhibits 

viscosity in the center, and is entirely viscous on the far left. The primary rationale for utilizing 

frequency domains is that numerous operations may be executed with greater precision in these 

domains [3]. In image processing, the Fast Fourier Transform (FFT) is employed to calculate 

convolution, which is then transformed into multiplication. Fluid simulation involves representing 

the velocity field as the combination of the mass-conserving field and the gradient field. 

Calculations are conducted on a three-dimensional grid, as shown in Figure 1: 

𝒱 = {0,… ,𝒩𝑥 − 1} × {0, … ,𝒩𝑦 − 1} × {0, … ,𝒩𝑧 − 1} 

𝒩𝑥, 𝒩𝑦, 𝒩𝑧 – are the grid sizes along the corresponding axes. The vertices v∈V store the values 

of the wave function 𝜓𝑣 ∈ ℂ2, the pressure 𝑞𝑣 ∈ ℝ, and the divergence 𝜉𝑣 ∈ ℝ. The algorithm uses 

the discrete velocity as the weight of the directed grid edges 𝑣𝑤 ∈ ℰ: 

𝜂𝑣𝑤 = ħ 𝑎𝑟𝑔〈𝜓𝑣, 𝜓𝑤〉ℂ, 

which is stored in staggered order in the vertices of the grid. 

Discrete divergence is expressed through the formula: 

𝜉𝑣 =
1

𝑉𝑣
∑

𝐴𝑣𝑤

𝑙𝑣𝑤
𝜂𝑣𝑤,

𝑣𝑤∈ℰ

 

where 𝐴𝑣𝑤 is the doubled area of the face, 𝑙𝑣𝑤is the length of the mesh edge, and 𝑉𝑣 is the 

doubled volume of the cell.   

 

Fig. 1 - Three-dimensional grid for calculations 

The input is the initial value of the functio 𝜓(0), a positive time step 𝑑𝑡, and the quantization 

power ħ. 
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Here the splitting operator is used, normalization is performed, and the pressure is calculated. 

Obstacles and buoyancy (taking into account gravitational forces) are also taken into account here. 

The initial parameters were found by the authors of the method by fitting. 

Mathematical description of initial and boundary conditions 

The basic algorithm for compressible fluid flow in a porous medium - initial condition - is 

presented below. 

Input: 𝜓(0),  𝑑𝑡,  ħ  //initial condition and parameters 

For j← 0,1,2,... 

 𝜓врем𝑡𝑖𝑚𝑒 ← 𝑆𝑐ℎ𝑟ö𝑑𝑖𝑛𝑔𝑒𝑟(𝜓(𝑗),  𝑑𝑡,  ħ) 

 𝜓𝑡𝑖𝑚𝑒 ←
𝜓𝑡𝑖𝑚𝑒

|𝜓𝑡𝑖𝑚𝑒|
 //normalization 

 𝜓(𝑗+1) ← 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑃𝑟𝑜𝑗𝑒𝑐𝑡(𝜓𝑡𝑖𝑚𝑒) 

This function converts the matrix (grid) to a diagonal form. For this purpose, the FFT is used 

(for values on the grid faces - DCT). 

In this case λ_v are the eigenvalues of the three-dimensional continuous Laplace operator , 

which is a boundary condition. 

The function Schrödinger(ψ, dt, ħ) 

 �̂� ← 𝐹𝐹𝑇3𝐷(𝜓) 

 �̂� ← 𝑒𝑖𝜆𝑑𝑡
ħ

2�̂� 

 Back  𝐼𝑛𝑣𝐹𝐹𝑇3𝐷(�̂�) 

Mathematical description of the equation for pressure 

Let us make a mathematical description of the equation for pressure. 

Pressure can affect a compressible fluid in three states: 

[153] State "0": no pressure is exerted on the fluid; 

[154] State "1": pressure begins to compress the fluid.  

[155] State "2": pressure has compressed the fluid to its physical limit.  

[156] State "3": the pressure stops acting on the fluid.  

Then given the states: 𝑃0(0) = 1; 𝑃1(0) = 𝑃2(0) = 0  The mathematical description of the 

pressure equation will look as follows:  

𝑃0(1) = 1 − 𝑞Σ; 𝑃1(1) = 𝑞1; 𝑃2(1) = 𝑞2; 𝑃3(1) = 0, 

𝑃0(2) = (1 − 𝑞Σ)
2 + 𝑞1𝑅1 + 𝑞2𝑅2;  𝑃1(2) = (1 − 𝑞Σ)𝑞1; 

𝑃2(2) = (1 − 𝑞Σ)𝑞2; 𝑃3(1) = 𝑞1𝑅13
̅̅ ̅̅̅ + 𝑞2𝑅23

̅̅ ̅̅̅ 

 

This function calculates the pressure of the compressible fluid within the confining volume, 

including the pressure exerted on the walls. This portion of the algorithm is executed using wave 

functions, as opposed to the conventional approach which often employs the direct Euler 

technique. 

Function 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑃𝑟𝑜𝑗𝑒𝑐𝑡(𝜓) 

 For all 𝑣𝑤 ∈ ℰ 

  �̃�𝑣𝑤 = 𝑎𝑟𝑔〈𝜓𝑣,  𝜓𝑤〉ℂ 

 For all 𝑣 ∈ 𝒱 

  𝜉𝑣 =
1

𝑉𝑣
∑

𝐴𝑣𝑤

𝑙𝑣𝑤
𝑣𝑤∈ℰ �̃�𝑣𝑤 

 𝜉 ← 𝐹𝐹𝑇3𝐷(𝜉) 

 𝜉 ← 𝜉 {�̃�
−1

0
,  𝑖𝑓�̃� ≠ 0  

 𝑞 ← 𝐼𝑛𝑣𝐹𝐹𝑇3𝐷(𝜉) 
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 Back  𝑒−𝑖𝑞  𝜓 // calibration transformation 

The eigenvalues of the discrete Laplace operator are utilized in this scenario. The gauge 

transform operation should be described in isolation.  The wave function is a complex entity, yet 

the measurable quantities resulting from operations on wave functions are real (as expected, since 

all quantities in the actual world can be measured using real numbers). Quantum mechanics 

remains unchanged when the wave function is multiplied by a complex number modulo ne (𝑒𝑖𝛼), 

where α represents the phase of the wave function. This means that the theory is invariant 

concerning global phase rotations, and the symmetry is preserved. Numerical scheme refers to a 

method or algorithm used to solve mathematical problems using numerical calculations. The 

equation employs local gauge transformations, which lack invariance - the function might undergo 

varying phase changes at different spatial positions. To restore invariance, it is necessary to 

introduce a new physical field. Therefore, the wave function's symmetry remains intact [2]. 

The 1-form velocity function is computed using three input parameters: the values of two 

wave functions, psi1, and psi2, as well as the Dirac constant bar. The conj function is utilized to 

acquire the complex conjugate of an integer. Return the calibrated transformation of e^(-qi) ψ. Here, 

the eigenvalues of the discrete Laplace operator are utilized. 

It is worthwhile to provide a separate explanation of the functioning of gauge transform. The 

wave function is a complex number, but the measured quantities resulting from operations on 

wave functions are real (as expected, as all quantities in the actual world can be measured using 

real numbers). Quantum mechanics remains unchanged when the wave function is multiplied by a 

complex number modulo one (e^iα), where α represents the phase of the wave function. This 

means that the theory is invariant under global phase rotations, and the symmetry is preserved. 

Numerical scheme refers to a method or algorithm used to solve mathematical problems using 

numerical calculations. The equation employs local gauge transformations, which lack invariance - 

the function might vary by different phases at distinct positions in space. To restore invariance, it is 

necessary to introduce a new physical field. Therefore, the wave function's symmetry remains 

unchanged [2].  

The 1-form velocity function is computed using three input parameters: the values of two 

wave functions, psi1, and psi2, as well as the Dirac constant bar. The conj function is utilized to 

acquire the complex conjugate of an integer.  

Figure 8 illustrates the image of the initial number z and its complex conjugate z ̅. These 

numbers are positioned symmetrically about the real axis. The % operator is used to do element-by-

element multiplication of matrices. The mod(x,y) function calculates the modulus of each element 

in the vector x concerning the number y. The variables iX, iY, and iZ represent one-dimensional 

arrays. The variables resX, resY, and resZ indicate the number of cells in each change. The variables 

sliceX, sliceY, and sliceZ are used to retrieve the grid slice in the respective dimensions. The 

incompressible flow simulation algorithm operates using two input parameters, namely the values 

of two wave functions, psi1 and psi2. The variable "schrodingerMask" represents the Fourier 

coefficient used to solve the equation. In addition, this approach utilizes the three-dimensional Fast 

Fourier Transform (FFT) and the inverse FFT (IFFT). The function fftshift3D(X) reorganizes the 

output arrays of the FFT by positioning the zero frequency at the center of the spectrum. To provide 

further clarification, below are a few illustrative instances of how the fftshift function operates. For 

instance, in the case of a one-dimensional array, the outcome of the array transformation will 

involve reorganizing its left and right portions cyclically. When applied to a two-dimensional array, 

fftshift exchanges the positions of the first quadrant with the third quadrant, and the second 

quadrant with the fourth quadrant (see to Figure 2).  
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Fig. 2 - Schematic of how fftshift works for a matrix 

For arrays of higher dimensions, fftshift performs a move of two half-spaces in each dimension 

(Fig. 3).  

Fig. 3 - Principle of moving half-spaces in fftshift on the example of a matrix 

Then the numerical scheme appears in the form as: 

||𝑃𝑖𝑗|| = |

1 − 𝑞Σ 𝑞1 𝑞2 0

𝑅1 0 0 𝑅13
̅̅ ̅̅̅

𝑅2 0 0 𝑅23
̅̅ ̅̅̅

0 0 0 1

| , где 𝑞Σ = 𝑞1 + 𝑞2 

Pressure calculation is based on two input parameters - values of two wave functions psi1, 

psi2. Realizations of the functions velocityOneForm and gaugeTransform are given in the following 

paragraphs, div - Hodge operator. The Hodge operator (Hodge star) is a change of basis to an 

orthogonal basis in the multidimensional case. 

Analysis of data and results of computational experiments 

The virtual environment solution consists of two projects. The Ecosystem project contains the 

libraries connected to the project. The DEC class contains methods for computing in the DEC 

system, the ISF class defines basic functions for simulating a two-phase compressible fluid in a 

porous medium. CxCubeVec and CubeVec are overrides for a vector of three-dimensional arrays 

(with CxCubeVec containing complex numbers). The Trackball class implements part of the 

functionality of the Pez library. 

In VisualStudio visualiser, there is a possibility to change some properties of the fluid and 

features of the implementation, which can be seen from the results of calculations. In particular, 

these are buoyancy (Liquidbuoyancy), weight (Liquidweight), time interval for rendering 

(Timestep), grid cell size (Cellsize), obstacle presence (Obstacleexists).  

For the Liquidweight parameter it is worth making an important clarification: algorithms and 

physical formulas usually use density rather than specific gravity of a substance, but one concept is 

often replaced by another in everyday life and the term "specific gravity" is more understandable 

for most users. Density and specific gravity are scientifically different terms, but under conditions 

of approximately constant free fall acceleration g and with negligibly small accelerations that can be 

neglected in weight calculations (i.e., when simulating conditions on planet Earth), it is possible to 

use one term instead of the other. 

Parameter changes are made using the buttons on the keyboard; if a parameter is changed, the 

changes are not dynamically applied, i.e., the simulation starts over. 

To add or remove an obstacle, use the keyboard shortcut O+Enter. One obstacle is 

implemented in the program - a sphere under the source of compressible fluid.  

The simulated fluid is in a limited volume - a transparent cube of fixed volume. Upon 
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collision with the transparent walls, the two-phase fluid can be observed to rise up the walls. 

Thus, the result of the simulation is parameters for the behaviour of a two-phase compressible 

fluid in a porous medium, which can be used in the construction of machines and mechanisms to 

operate under the simulated conditions. 

The fundamental assumptions made in developing the model are that momentum transfer 

between fluids within the porous structure is negligible and a capillary equilibrium condition exists 

throughout the medium 

Conclusion 

The established model of biphasic flow in porous media accurately characterizes the hydraulic 

phenomena and phase interactions that take place. Furthermore, the model exhibits exceptional 

flexibility by employing distinct conservation equations for each phase inside both the fracture 

network and the matrix network.  

Furthermore, the development of the constitutive and closure relations for the two-fluid model is at 

a satisfactory level. This text provides a comprehensive analysis of the primary challenges 

associated with modeling different interfacial transfer circumstances. The transfer of mass and 

momentum across an interface is directly proportional to the area of the interface and the force that 

drives the transfer. 
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