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Annotation: The circuit netlist, logic locking mode, is an obfuscation method used to protect outsourced chip 

designs. Logic locking has been demonstrated to be broken via Boolean Satisfiability-based attacks, which has 

spurred researchers to create more robust defenses. The development of SAT attack marked a turning point in 

research on logic locking. Software systems frequently update their huge executable code, so obfuscating the 

program for each small update results in a significant loss of efficiency. In order to provide security guarantees 

against synthesis-driven assaults, this study provides a transformation strategy. Its Random Technique introduces 

a novel fault injection attack to undermine any locking mechanism that depends on a saved private key. This made 

it possible to compare the obfuscated circuit to its source, to determine whether a sufficient structural change has 

been made to support its functionality. The RT created an attack strategy to discover the value of the private key, 

K*. It examines the SFLL's security and offered a solution to determine the hamming distance, "h," using one or 

more SAT queries. It proposes an effective bit-flipping attack using the irregularity between the protected input 

patterns and the private key. By flipping bits, the attack cracks the private key, K*, with (n-1) queries. The 

outcome demonstrates that, given a protected input pattern, the right key may be quickly discovered by bit-

flipping. 

Keywords: Algorithms, Flipping, Logic Locking, Random Technique, Satisfiability. 

 

1.0 Introduction 

A special type of hardware obfuscation known as "logic locking" involves adding extra logic components or key 

gates to a netlist [48]. Key gates boost the security and privacy of the hardware while only adding a modest 

amount of extra cost to the circuit design. The security against particular sorts of attacks is determined by the 

insertion method and algorithm of key gates. If a circuit is locked, a special key must be used to unlock it; 

otherwise, the circuit will behave incorrectly when it outputs data. Techniques for logic locking encryption can be 

developed to defend against certain attacks such side channel attacks, key sensitization attacks, and SAT attacks. 

Additionally, researchers have merged concepts from several methodologies to produce stronger and more secure 

netlists [20]. In order to make it more difficult for an attacker to reverse-engineer a circuit, a technique called 

hardware obfuscation alters the description or structure of a circuit. Some obfuscation methods alter the circuit's 

gate level layout, while others add gates to shield the circuit's logic [3]. By adding extra gates and logic elements 

to a circuit, logic locking is a technique that locks the circuit and causes an inaccurate output unless the right key 

is supplied to the circuit. Until the additional gates are unlocked with the right key, the Integrated Circuit (IC) will 

be regarded as locked or functionally wrong. The correct key value will cause the gate to behave as a buffer and 

have no impact on the remaining logic when XOR and XNOR components are used as key gates. The key gate 

will produce the incorrect value if the incorrect key value is supplied, rendering the circuit inoperable. An 

overview of the logic locking technique is shown in Figure 1. The netlist of the original circuit is enhanced by 

adding more key gates and a key-value to unlock the circuit. The most common approach to addressing the 

dangers from untrusted manufacture has evolved, is logic locking [10], [34], [9] and [22]. 
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Figure 1: An Over view of Logic Locking technique 

In logic locking, a circuit's netlist is secured with a secret key, preventing the circuit from operating as intended. 

Figure 2 depicts an abstract representation of logic locking, in which the key is kept in memory and used to open 

the locked circuit's functionality. The key must be kept a secret, and caution must be exercised during the design 

phase so that information is not immediately leaked during operations to the principal output. Between logic gates, 

a key gate is inserted, with one input coupled to the value of the key bit. These key gates increase the device's 

security while introducing a minor overhead to the circuit as a whole [5] [22]. 

 

Figure 2: Simplified Example of Logic Locking Method 

1.1.0 Fundamental of Logic Locking 

Figure 2 displays an easy illustration of logic locking. Two-input OR and AND gates make up the original logic 

gate. To further combine the initial output f with a locking enable signal k, an exclusive-OR gate is added. Next, 

there are two logic XOR gates in the locked netlist, in that order. Equation (1) gives the locked Boolean logic 

function. 

. .lockf f k f k 
     (1)

 

Where f ab , f is the original function, k is the locking enable and lockf  is the locked function. An application-

specific integrated circuit (IC) or processor with dedicated security hardware is used in hardware-based security to 

perform encryption functions and thwart assaults. At the IC hardware level, where encryption algorithm 

performance is improved, security operations like encryption or decryption and authentication take place 

(JeanPaul et al., 2020). Additionally, sensitive data is shielded inside the electrical confines of the encryption 

hardware, including keys and crucial final application parameters. The protection of consumer data and the 
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creators' intellectual property were among the various countermeasures for physical attacks that were described in 

earlier literature in order to secure an IoT system. 

Integrated circuits (ICs) can be secured using the hardware security method of logic encryption by adding extra 

gates. By ensuring that predetermined outputs are only produced when the right key inputs are given, the inserted 

gates stop IC forgery, IP theft, and IC overproduction. Two main criteria are typically used to assess the 

robustness of logic encryption: (1) interdependency between keys, and (2) output corruption against assaults such 

path sensitization attack, SAT based attack, hill-climbing attack, etc. However, the vast majority of logic 

encryption techniques in use prioritize one requirement over another. This paper proposes a fully correlated key 

interdependency block enhanced logic encryption approach. The technique uses an uncommon node analysis 

method to pinpoint the positions of key-gates and strengthens the interdependency of keys. 

1.1.1 Classification of logic locking 

Traditional logic locking and SAT attack resistant logic locking are the two main forms of logic locking. 

1.1.2 Traditional logic locking.  

The methods in this group were concentrated on creating effective algorithms for choosing the key gate locations. 

Strong logic locking [36] and random logic locking [35] are three examples of classical logic locking strategies. 

Sequential logic locking methods include [52], [5], [6], [8], [9], [10]. 

1.1.3. Resilient logic locking against SAT attacks.  

The SAT attack, which was able to defeat all conventional logic locking methods, changed the course of logic 

locking research completely [25]. Recent research initiatives like SARLock [39], Anti-SAT [3], TTLock [9], and 

SFLL [12], focus on thwarting the SAT attack and ensure 50% Hamming distance with Logic locking metric 

1.1.4. Logic locking metric 

A protection method based on the addition of extra logic gates has its fundamental component as the ability to 

modify outputs [1]. Therefore, two qualities can be utilized to assess the efficacy of these strategies. The first one 

is: how many inputs gate keys can span each extra logic gate? This has to do with how many gates need to be 

installed to enable complete functional locking. It is plainly more efficient to lock several outputs with a single 

gate rather than using multiple gates. Following is a definition of the locking ratio: 

 
#

.
# .

outputs
Locking Ratio

locking gates
     (2)  

A second indicator is how far the inserted gate is from the outputs since locking gates should be inserted as deeply 

into the netlist as possible [49]. As a result, the calculation also includes the number of logic levels between the 

locking gate and the outputs. The average number of logic levels on the shortest path between the inserted gates 

and each output that can be reached is used to calculate the average distance between the inserted gates and the 

outputs [31].  

1.1.5. Obfuscation 

Digital Signal Processing (DSP) plays a critical role in numerous applications such as video compression, portable 

systems/computers, multimedia, wired and wireless communications, speech processing and biomedical signal 

processing [47]. However, the security aspect for DSP applications has only attracted little attention in the 

literature. While PUFs can be used as authentication-based methods to improve the security of DSP circuits, 

obfuscation-based approaches are also obliged to protect the intellectual property. Design obfuscation is a 

technique that transforms an application or a design into one that is functionally equivalent to the original but is 
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significantly more difficult to reverse engineer. In this study, a novel design methodology for obfuscated DSP 

circuits is designed by hiding functionality via high-level transformations [26]. The DSP circuits are obfuscated by 

introducing a finite-state machine (FSM) whose state is controlled by a key. The FSM enables a reconfigurator 

that configures the functionality mode of the DSP circuit [38]. High-level changes lead to numerous proportionate 

circuits and all these create equivocalness within the structural level. Also, high-level changes permit plan of 

circuits utilizing same information but diverse control-flows. Diverse variety modes can be embedded into the 

DSP circuits for obscurity. Some modes produce functionally incorrect outputs, but the outputs are meaningful 

from a signal processing point of view, so they can represent the correct output in many situations. Other modes 

lead to meaningless output. The initialization key and configuration data must be known for the circuit to work 

correctly [40]. As a result, the proposed design methodology produces DSP circuits that are both structurally and 

functionally obfuscated. High-level transforms have been leveraged for their speed-performance tradeoffs in the 

domain, but our work is the first to leverage the security perspective of high-level transforms. 

1.1.6 What is Hamming Distance? 

The Hamming distance sum up the comparing components that vary between two vectors. In practical terms, the 

more noteworthy the Hamming distance, the more the two vectors contrast. Contrarily, the smaller the Hamming 

distance, the more comparable the two vectors are [19]. 

Mathematically, the Hamming Distance is represented by the formula below: 

   (3) 

1.1.6.1 Complete Code: 

public class HummingDistanceString { 

public static void get Distance(String x, String y){ 

int humming_distance =0; 

if(x.length()!=y.length()){ 

System.out.println("Both string sizes are different"); 

return; 

} 

for (int i = 0; i <x.length() ; i++) { 

if(x.charAt(i)!=y.charAt(i)) 

humming_distance++; 

} 

System.out.println("x="+x+", y="+y+" Hamming distance: " + humming_distance); 

} 

public static void main(String[] args) { 

String x = "AABBCCDD"; 

String y = "AAAACCCC"; 
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getDistance(x, y); 

x = "dogandcat"; 

y = "catanddog"; 

getDistance(x, y); 

} 

} 

Output: 

x=AABBCCDD, y=AAAACCCC Hamming distance: 4 

x=dogandcat, y=catanddog Hamming distance: 6 

To run the analysis, a key bit matrix of (say) size 2|B| × |B| is generated while each row represents a unique 

hypothesis of |B| key bits. As previously mentioned, it‟s expected that challenges which is in the same hypothesis 

decision, that is, same key bit value (say, B), shows a small hamming distance. So for each hypothesis decision, 

the pairwise hamming distances generate the same key bit (Bi = Bj), summed up and form a fitness value f. For 

example, for |B| = 5 and key hypothesis B1… 5 = {1, 1, 0, 1, 0} the fitness value: 

 ones zeroesf f f   

 =        1 2 1 4 2 4 3 5, , , ,HD c c HD c c HD c c HD c c     (4)  

The fitness value of such a hypothesis is directly related to the probability that this hypothesis is the correct key. 

The lower the fitness value f of a hypothesis, the more likely the hypothesis is the correct one. To quantify the 

results of the hamming distance characterization, a well-known definition of Shannon Entropy would be used [5]. 

1.1.6.2. Shannon Entropy  

Entropy, specifically relates to Shannon Entropy, measures the amount of information present in a source of data. 

For a combinational circuit (or equivalently, a Boolean function), entropy relates to the number of distinct outputs 

that can be produced by the function [33]. For a single output, Boolean function with a probability of logic-1 is 

denoted by Pi, the entropy is given by Eq. 5: 

2

2

1

log

B

i i

i

H p p


 
    (5) 

Let ip  be the probability that the correct key bit hypothesis is placed at position i  in the ranked list generated by 

the hamming distance characterization. The Probability Density Function (PDF) for the entropy estimation is 

empirically generated from the runs and is therefore just an approximation. Increasing the runs had no influence 

on the PDF, so it is assumed that a sufficient accurate PDF is generated.. 

1.1.7.0. Statement of the Problem 

In the context of cyber security, obfuscation is a method of manipulating a computer program with the intention to 

obscure its inner workings [28]. Various obfuscation techniques have found their use as a means to protect 

intellectual property and prevent code tampering, as well as malicious purposes, such as creating malware that can 

circumvent detection mechanisms [2]. Despite their numerous advantages, hardware obfuscation is prone to 

various cyber threats, attacks and challenges.  
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Recently, a logic locking technique referred to as stripped functionality logic locking (SFLL) has been projected 

and shown to face familiar attacks in an exceedingly incontrovertibly secure manner [25]. SFLL strips some 

functionality from the initial design by corrupting its output to a variety of “protected” input patterns. This current 

SFLL implementation depends on the present security agnostic tools like Synopsys DC Compiler [37], for 

synthesis. Netlists synthesis using these tools may leave behind traces for an attacker to exploit. This work plans 

to modify the tools and offer security guarantees against synthesis-driven attacks [32], [39].  

Secondly, the SFLL relies on the designer to decide which parts of the design is safety critical. This work 

automates this process by developing metrics that quantify the importance of various circuit components and 

identify protected patterns that require minimal implementation effort and saves power, or latency. 

As discussed previously, the introduction of the SAT attack could be considered as the turning point in logic 

locking. However, software systems typically contain large amounts of executable codes that are updated 

severally, sometimes very frequently. So re-obfuscating the program after every little update would lead to a 

considerable loss of efficiency. Therefore, this study presents a transformation design to strengthen security from 

weaker to stronger, while maintaining an incremental policy. The author introduces a reliable logical obfuscation 

technique called random technique (RT) that meets the main requirement of a well-designed logical locking 

solution. 

2.0 Literature Review 

With reference to sequential logic obfuscation, an algorithm applicable to digital signal processing circuits such as 

filters and FFT, employing a high level transformation approach was planned in [5]. This technique used 

meaningful and non-meaningful modes of design to hide its functionality and render it unusable. A specific 

application of this technique using an FFT circuit is described in [15], [16]. However, these methods are highly 

specific to the circuit described and have not been universally demonstrated. This article uses the concept of these 

schemes to introduce new methods of obfuscation. The proposed dynamic obfuscation scheme leaves the system's 

data path intact. Modes can be controlled simply by changing the control circuit. [29] proposes a method to protect 

against side-channel attacks on scan cells included in chips to support testing. Obfuscation applied to scan data 

was called dynamic obfuscation. However, the dynamic obfuscation technique proposed in [51] and [50] differs 

from the one proposed in this article. In addition, [31] introduced a technique to protect IP released for evaluation 

using a hardware Trojan. Our research also uses the same high-level idea of dynamically changing data to protect 

against attacks. [41] used a hardware Trojan horse circuit to design dynamically obfuscated circuits. However, 

application of these concepts of conventional hardware obfuscation that protects chips during manufacturing has 

not yet been covered in previous publications. 

Many RE countermeasures, such as circuit-level [4], [47], [27] and [34], and algorithm-level [23], [24] and [13], 

have been proposed to address RE challenges and prevent IP infringement. At the circuit level, [17], [18] proposed 

an image-based cloaking method for extracting gate-level netlists by hiding gates [46] or dummy contacts in the 

layout. Another technique to prevent IP piracy is logical locking [35]. Using XOR/NXOR gates, MUXES, and 

combinations of these elements, additional encryption blocks are inserted to hide the functionality and 

implementation of the IC. Therefore, the design will provide accurate functionality only when the correct keys are 

applied [27]. By combining obfuscated cells with functional circuits that cannot be physically duplicated, licenses 

can be generated to improve the security of hardware circuits [14]. Unfortunately, on-chip storage of various data 

is inherently vulnerable to attacks such as SCA, imaging, and error analysis. At the algorithmic level, [13] 

proposed to protect all states with a cheap state deflection-based obfuscation method that dynamically deflects the 

state transitions from the original transition path to the black hole cluster if the wrong key is applied. Koteshwara 

et al. [11] planned a dynamic technique, leading to the modification of obfuscating signals with time. [50] Planned 

a hologram‐based obfuscation, that integrated 2 digital signal process (DSP) kernel architectures during a 



     INTERNATIONAL JOURNAL ON ORANGE TECHNOLOGY 

                                          https://journals.researchparks.org/index.php/IJOT e-ISSN: 2615-8140 | p-ISSN: 2615-7071 

               Volume: 4 Issue: 10 | October 2022 

 

            © 2022, IJOT     |     Research Parks Publishing (IDEAS Lab)   www.researchparks.org                 |     Page 7 
 

  Copyright (c) 2022 Author (s). This is an open-access article distributed under the terms of Creative Commons    
Attribution License (CC BY).To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/ 

unseeable manner while not dynamical the practicality of every DSP kernel. However, the introduction of a 

further code needs a lot of hardware overhead and is additionally susceptible to SCA. Field programmable gate 

array (FPGA)‐ primarily based approaches in the main shield device security through algorithms for IoT 

protection [46], applying algorithms to register transfer level (RTL) codes to understand RTL obfuscation, and in 

the main defensive against hardware Trojan horses, aspect channel attacks, and then forth [51]. 

[30] Planned a way that keeps one or a lot of directions encoded (i.e. en-crypted [42], [43] or compressed [44], 

whereas the program isn't execution and decodes the sequence(s) once the program is running [18] . The resilience 

of program cryptography against attacks depends on the rule used for cryptography, e.g. a compression rule is 

undone while not a secret key, whereas associate coding needs finding the key. However, the prices might also be 

comparatively high compared to different obfuscation techniques, as a result of the code should be decoded before 

it is dead. There's a trade-off between resilience and value locking on the amount of roughness if transformation is 

applied [11], that is, if applied at instruction level [2]. The price and resilience measures are high as a result of the 

decoded instruction and re-encoded, hence the complete code is kept in decoded memory type. [45] at one time 

proposed a program cryptography, applied at program level, decoded and later starts execution, hence, associated 

aggressor performed a memory dump and decryption to possess a replica of the complete code. [42] in addition, 

proposed a system that doesn't shield well against dynamic analysis attacks, throughout execution, the code is 

decoded in memory and it is changed directly in memory by the MATE aggressor [50].  

Logic protection algorithms are developed in response to rising threats against the hardware provide chain; 

particularly, these techniques are to mitigate the risks of information science piracy through reverse engineering 

[8], IC overrun, and Trojan insertion [9]. The essence of this approach is to change the planning by adding a 

protection mechanism, creating it tougher for associate someone to steal style secrets, produce unauthorized 

copies of invented chips, or perform a purposeful modification for the netlist to insert a Trojan. This section 

reviews existing logic protection algorithms and connected attacks. 

3.0. Research Methodology 

3.1.0. Insertion Phase 

In this section, we have a tendency to choose the positions where locking key gates are going to be inserted. The 

choice in this study is formed haphazardly (randomly) and the key gates are inserted in those designated positions. 

The choice process varies with different proposed methodology. The random methodology enforced for position 

selection with the obfuscation benchmark suite is represented below. – Random: the thought of inserting locking 

gates in random positions is comparable to the thought of position choice projected in [4]. As represented before, 

the only methodology of key gates insertion is inserting the key gates haphazardly within the circuit. The 

algorithm is depicted below: 

3.1.1 Algorithm 1: Random Position choice 

1: list <Node> RandSel[C:circuity, LN=list<Int>] 

2: list <Node > LP={ } 

3: list < Modules > LM=extract Modules ( c) 

4: iM LM   do 

5: 1 ij to N     do 

6: Index rand=Random (size, iM Nodes   
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7: for , [ ]sel iN M Nodes rand  

8: while selN LP  do 

9: rand =Random (size ( ( , )iM Nodes ) 

10: for , [ ]sel iN M Nodes rand  

11: LP add ( selN )  

12: return LP 

3.1.2. Identification of Locking Points 

When a locking point „ i  ‟ has iO  alternatives, the decision can be represented with an integer value between 1 and 

O. For example, if an addition can be locked with two types of “fake” operations: subtraction and multiplication, 

the corresponding element can take on: 0 (no locking), 1 (lock with subtraction), and 2 (lock with multiplication). 

On the contrary, a control branch can assume only two values: 0 (no locking), 1 (locking). So, the analysis creates 

a vector of integers that represents decisions for all locking points. The integer vector representing a locking 

solution has as many elements as the number of locking points. The number of key bits Ks required to lock a 

solution is: 

1 1 1

.

c a bN N N
s

c c a bK b B b b    
    (6)  

where N
c
 , N

a
 and N

b
 are the total number of locking points for constants, operations and branches, respectively 

[20] [21].  

 The random logic locking process [51] locks the circuit by inserting XOR key-gates at random locations during a 

netlist. Figure 3 shows a netlist latched with 2 key-gates, K1 and K2, mistreatment random logic locking. In 

random logic locking, the key gates measure unfolds uniformly within the entire netlist [44]. Since the placement 

is random, it is assumed to be uncorrelated key bits. Considering these assumptions, every bit is delineated as a 

binary symmetrical channel within a binary wiretap model, as shown in figure 3. In this classical model, the 

proposed enumerations of the combine key bits, is achieved by setting the input (input a = 1, b = 0 and c = 0). One 

will use this pattern to work out the worth of G1 in Output 2. These bits are inputs to some extra logic gates 

inserted into the netlist. Physically unclonable functions (PUFs) are functions derived from physical properties of 

semiconductor components that are distinctive to every part [46]. The key bits for logic cryptography is derived 

from PUFs, basically providing a singular key for every chip. Netlist level obfuscation is taken into account as a 

measure against hardware trojans [13]. The fact that control gates and the associated pact resemble the 

AND/NAND gates in weighted random pattern generation, we call the proposed approach logic locking. 
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Figure 3: A Circuit with Two Camouflaged Gates C1 and C2 Which Can Be Resolved Individually. 

3.1.4. Functionality Strip 

The first modification of the initial netlist may be a functionality strip operation, shown in Figure 4. Its final goal 

is to invert the output of the logic cone for all input patterns that has a Hamming Distance, h, from the private key. 

The program iterates through all 2key size patterns and checks if it‟s acting distance from the private key is h. For 

such patterns, associated AND circuit is inserted. Its inputs are inputs of the logic cone. Outputs of all such created 

AND gates are fed to a recently inserted OR logic gate. The output of the OR logic gate is logic „1‟ for those input 

patterns of a hamming distance, h, from the private key. It's then fed to a recently inserted XOR gate whose input 

is that of the protected logic cone. The output of the XOR gate is then the initial logic cone output for input 

patterns with a hamming distance, h, and an inverted logic cone output for input patterns with Hamming distance 

h from the private key. 

 

Figure 4: Flowchart for Inserting Logic Locking Gates 

3.1.5. Differential Entropy Testbench Template 

To estimate the mean differential entropy, the author ran a behavioural simulation of the obfuscated design. That 

is, a test bench is illustrated to measure differential entropy in our framework with Parameter N_OUT = 256; and 

parameter DELTA = 0.00000000001;]. This is generated by our framework, and contains inputs keys and golden 
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outputs. A file module is generated with input vectors for both primary input keys, together with outputs obtained 

by simulating the original design with the same primary input vectors. The testbench for the outputs is similar. 

The output of the circuit is collected for each combination of primary input and key input to estimate Pi. Then we 

evaluate the differential entropy with the following formula, previously described in Equation 5:  

 
1

1 1 1
log 1 log

1 1

N

i i

i i i

H p p
N p p

 
   

  


    (7)

 

The testbench designers must know at least the control side of the design. The key points of the testbench are the 

synchronizing ones. If a design has no control input or output those phases can be omitted but the designers must 

know the correct cycles in which they should provide the inputs and when to read the corresponding outputs. 

The area over head can therefore, be estimated as follows: 

. . .AreaOverhead c b a          (8) 

where „c‟, „b‟, and „a‟ are the numbers of bits used for obfuscating constants,  , ,&,    are parameters that can 

be either given by the designer or estimated by the framework. To estimate the overheads parameters, the 

framework measures the mean percentage overhead for each type of obfuscation point. To do so, it synthesizes 

and measures the area of the plain design and of three obfuscated designs, each of them obtained by obfuscating 

all the obfuscation points of the specific category. 

3.1.6 To. Assess the Vulnerability of a Locked Circuit 

Algorithm 3: Bit –Coloring Attack 

Input: The SFLL circuit  , ,c x k y , a protected input pattern x̂ , and original function  f x  

  ' '( , ) _ , 1 ;x k SAT restore unit x k   

  ' ', ;h HD x k  

  0
ˆ ;c x red  

 ' ˆx x  with x̂  flipped; 

 For ˆ ˆ,1 1ix x i n     do 

 
'' ' 'ˆ ˆ . ;ix x with x flipped      

If 

   

 

 

 

ˆ ˆ'' ''

ˆ ;

ˆ

ˆ ˆ ˆ.... ... ,0 1,

i

i

i i

if x sf x then

c x red

else

c x green

k x with x flipped i n if c x h







    
 

Theorem 3.1.7: Given    ˆ ˆ ˆ, . ,x s t sf x f x , the correct key K* of SFLL can be found with only n-1 queries to an 

activated IC [48]. 
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Proof: we want to color each bit of x̂  with green and red colors in a way that: 

 
*ˆ, ,

ˆ
;

i i

i

red if x k
c x

green otherwise

 
 
     (9)

 

Since K* is unknown, we develop an attack method to find K* by flipping bits of x̂ . We flip the first bit of ˆ,x  

then flip a bit ˆ
ix  among the remaining n-1 bits to have ˆ 'x  and check whether    ˆ ˆ' 'f x sf x . Please note that 

 ˆ ˆ', 2HD x x   (Hamming Distance) and if      ˆ ˆ ˆ' ' , ', .f x sf x HD x K h   Therefore, the flipped bit ˆ
ix  will be 

colored differently from the first bit ˆ.x  we flip ˆ
ix  back, and test the next bit. With these operations, we partitioned 

the bits of x̂  into two groups. Because h is already known, we compare the number of bits in the partitioned 

groups with h and it is easy to show that at least one of the groups have h number of bits. Therefore, K* can be 

found by flipping bits of x̂  in that group. 

Lemma 1: If the number of bits in two groups are the same after the coloring process illustrated in Theorem 3.5.1, 

the two choices of a correct key K* are equivalent. [49].  

Proof: Such a situation happens when .
2

n
h   We can therefore, find K* or its complement of k  If K* and K

 

share the same protected input patterns, then K* and *K  are functionally equivalent. Assuming 

 ˆ ˆ, . , , *x s t HD x K h   but  ˆ, *HD x k h , since *k  is the complement of K*,  ˆ, * .HD x k n h   Since 
2

n
h  , 

   ˆ ˆ, * , *
2

n
HD x k HD x k   which is a conflict with the assumption. Here is an example for illustration: 

Assuming K*=10110, h=2 and an attacker has a protected input pattern ˆ 00010x  . It is required to assess the 

vulnerability of the locked circuit.  

Step 1: we flip the first bit of x̂  to get 10010 

Step 2: we them flip individual bits from 1 4
ˆ ˆ, ,x to x . 

Step 3: display the coloring result as shown in Table 1. 

Table 1: Coloring Result 
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Step4: since h = 2, we check the group that has the same color and the groups with two bits  0 2
ˆ ˆ&x x  has the 

same color. 

Step 5: Decision, therefore, k* can be simply found by flipping 0 2
ˆ ˆ( & )x x . 

3.1.8. Incorporating Logic Locking Attacks into the Random Technique Framework 

Understanding information leakage and the effects on security of logic locking is illustrated in figure 5, through 

the use of a generic circuit. The generic circuit uses an XOR based locking scheme and the placement of key gates 

is done randomly. Furthermore, since the placement is random, RT is also assumed to have uncorrelated key bits. 

Considering these assumptions, each bit can be represented as a binary symmetric channel inside a binary wiretap 

model shown in figure 4. 

 

Figure 5: Stripped function logic locking 

3.1.9. Result and Discussion 

Algorithm 3 is used to explain the logic locked vulnerability and how it affects the security of logic locking. The 

gate keys are placed at random and the algorithm uses an XOR-based locking technique. In order to tackle 

random-based logic locking (RLL) (Chen et al., 2021), testability and fault analysis qualities are examined. RLL is 

a random placement approach used for inserting key-based XORes. This made it possible to compare the 

obfuscated circuit to its golden source to see whether sufficient structural changes had been made to manage the 

functionality of the original circuit. Additionally, it gives an estimate of how much work would be necessary for 

an attacker to defeat the inserted Logic lock. 

The distance formula, which determines the difference between two multi-element descriptions, is used to 

measure this type of distance. Since the value of K
*
 is unknown, we create an attack strategy that uses bit-flipping 

of x̂  to find K*. We flip the first bit of ˆ ', 1,...,x i n   and determine whether    ˆ ˆ' 'f x sf x  while noting the 

Hamming Distance "h." The two options for a proper K* are comparable if the total amount of bits in the two 

groups after flipping is the same. Therefore, flipping is used to determine Kvalue. *'s To make it difficult for an 

attacker to determine the proper key by examining the locked circuit is the challenge of logic locking. 

3.2.0. Evaluation metric 

Matthews Correlation Coefficient (MCC) [7] is employed as a statistic for accuracy due to the imbalances in the 

data. When there are class inequalities, accuracy alone can deceive the viewer. The MCC formula is displayed in 



     INTERNATIONAL JOURNAL ON ORANGE TECHNOLOGY 

                                          https://journals.researchparks.org/index.php/IJOT e-ISSN: 2615-8140 | p-ISSN: 2615-7071 

               Volume: 4 Issue: 10 | October 2022 

 

            © 2022, IJOT     |     Research Parks Publishing (IDEAS Lab)   www.researchparks.org                 |     Page 13 
 

  Copyright (c) 2022 Author (s). This is an open-access article distributed under the terms of Creative Commons    
Attribution License (CC BY).To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/ 

equation (10). MCC considers all components of the confusion matrix, whereas accuracy just considers the true 

positives and true negatives. It produces a number between -1 and 1, with a higher score indicating a more 

effective model. 

    

TPxTN FPxFN
MCC

TP FP TP FN TN FP TN FN




   
   (10)

 

Where, TP means True Positive value 

 TN means True negative value 

 FP denotes False Positive 

 FN denotes False Negative value 

The Matthews Correlation Coefficients (MCC) describes the following: 

"A correlation of: 

 C = 1 denotes perfect correlation, 

 C = 0 describes the expected random value, and 

 C = -1 denotes total disagreement of prediction and observation"`. 

For example, four hundred automobile owners were asked to categorize the main reason for selecting the 

particular make and model of their present car. The two possible categories were (i) performance and (ii) 

appearance. This is depicted in (Table 2): 

Table 2: The computation of the Matthews Correlation Coefficients (MCC) 

 

To calculate the MCC of the model, we can use the following formula of equation (10) 

 

   

    

95 165 85 55

95 85 85 55 165 85 165 55

0.297

X X
MCC




   



 

0.297 denotes a classifier that is close to a random guess classifier (0).  

The code below shows array of class prediction and the computation of Matthews correlation coefficient of a 

model in Python: 

import numpy as np 
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from sklearn.metrics import matthews_corrcoef 

#define array of actual classes 

actual = np.repeat([1, 0], repeats=[165, 235])#define array of predicted classes 

pred = np.repeat([1, 0, 1, 0], repeats=[95,85,55, 165]) 

#calculate Matthews correlation coefficient 

matthews_corrcoef(actual, pred) 

0.2971421052631579 

This confirms the manually computed value.. 

3.2.1. Computation of Balanced Accuracy  

This is a metric to assess the performance of a classifier model. 

It is computed as follows: 

( ).
2

sensitivity
Consistency balanced accuracy   (11) 

Where: 

The percentage of positive cases the model is able to identify is called the "true positive rate," or sensitivity. 

The percentage of negative cases that the model is able to identify is known as the "real negative rate" or 

specificity. 

This statistic is helpful for categorizing cases with imbalances. The model's predictions are enumerated in the 

confusion matrix below (see table 3) 

Table 3: Summarizes the prediction model 

 

Therefore, to compute the balanced accuracy of the model:  

i.  first calculate the sensitivity and specificity: 

Sensitivity: The “true positive rate” = 
   

95
0.5277

95 85

TP

TP FP
 

 
 

Specificity: The “true negative rate” 
 

165
0.75

165 55

TN

TN FN
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ii. Then compute the balanced accuracy as: 

Balanced accuracy score = (Sensitivity + Specificity) / 2 

Balanced accuracy score 
 0.5277 0.75

0.63885
2


    

Therefore, the balanced accuracy for the model is (0.63885). 

The Python code below demonstrates how to define an array of predicted classes and an array of actual classes, as 

well as how to compute the model's balanced accuracy: 

3.2.2. Example: Calculating Balanced Accuracy in Python 

import numpy as np 

from sklearn.metrics import balanced_accuracy_score 

#define array of actual classes 

actual = np.repeat([1, 0], repeats=[165, 235]) 

#define array of predicted classes 

pred = np.repeat([1, 0, 1, 0], repeats=[95, 85, 55, 165]) 

#calculate balanced accuracy score 

balanced_accuracy_score(actual, pred) 

0.63885 This confirms the manually computed value. 

3.2.3. Conclusion 

Logic locking has emerged as an obfuscation technique to protect out sourced chip designs, where the circuit 

netlist is locked and can only be functional when a secure key is programmed. The Boolean satisfiability-based 

attacks show how to break logic locking circuit, and simultaneously motivate researchers to develop more secure 

countermeasures. In this paper, we present a novel fault injection attack to break any locking technique that relies 

on a stored secret key, and denote this technique as Random Technique (RT). To evaluate the logic encryption 

robustness, two major criteria were utilized, which are (i) the interdependency between the keys and (ii) the output 

corruption against attacks, including path sensitization attack. Algorithm 2, is used to assess the vulnerability of 

the locked circuit. This allowed the obfuscated circuit to be measured against its golden source to indicate if 

enough structural change has been implemented to handle its functionality. The RT of this study, developed an 

attack method to find the value of the secret key, K*, which is unknown. This study carefully analyzed the 

security of SFLL, and suggested a smart method to find the hamming distance, ‟h‟ by one or more SAT query. It 

utilized the regularity between the protected input patterns and the secret key to propose an efficient bit-coloring 

attack. The attack deciphers the secret key, K*, with (n-1) queries by flipping bits. The result shows that given a 

protected input pattern, the correct key can be found in a very short while by flipping bits. This article, also shows 

how MCC produces a more informative and truthful score in evaluating binary classifications for accuracy. 

The proposed reconvergence metric is found to be proportional to key sensitization attack resiliency and inversely 

proportional to SAT attack resiliency. These conclusions will motivate future work to improve the proposed 

metrics, develop new ones, and utilize the metrics in security assessment. 
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