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Abstract - In this research work, we propose a system of nonlinear ordinary differential equation used to model the 
interaction between Langerhans cells and HIV infection. The model consists of five compartments, namely, susceptible 
Langerhans cells, infected Langerhans cells, susceptible T-cells, infected T-cells and free HIV particles. The biology of 
interactions of Langerhans cells with HIV and mathematical preliminaries which plays a crucial role in our entire research work 
was described. By presenting a theoretical framework related to the infection mechanism, a biologically meaning full 
assumption was considered. Furthermore, the positivity of the model solution, the equilibrium point (both virus free and endemic 
equilibrium) of the model was shown and its stability was investigated. Finally, by using a numerical simulation the developed 
model was studied and the results concluded that the numerical simulation matches the analytical solution as expected. 
Key Words:  Langerhans cells, T-cells, HIV, Stability and Numerical Simulation. 
 

1. INTRODUCTION  
 

The term Langerhans cell (LC) was studied by a German medical student Paul Langerhans. He was 

21 years old when he described in 1868 a new epidermal cell type which now bears his name. The cells 

have long dendrites, so Langerhans mistakenly regarded them as a component of the nervous system. A 

century later, Inga Silberberg discovered that these cells instead have a role in immunity, and later work 

showed they are a type of dendritic cell, a classic antigen-presenting cell. A network of epidermal LC 

laces through the skin and mucosa, including the anal and vaginal mucosa as well as the male foreskin 

[2]. 

An electron microscopic study showed that during sensitization to allergenic compounds, LC 

migrate from the skin through the lymph vessels and come into close contact with lymphocytes in the 

draining lymph nodes [3]. These findings suggested that LC play an important role in the development 

of the immune response to skin antigens and triggered various groups to investigate the possibility that 

it may function as the most peripheral arm of the immune system. Throughout the 1970s and early 

1980s, it was established that the cell represented an essential element of the immune system playing 

a central role in the mechanisms of defense of the body in a wide range of pathological processes [4]. 

It is a well known fact that the CD4+ T-cells are targets of HIV and are also important for the 

establishment and maintenance of an adaptive immune response. CD8+ T-cells are the primary 

effectors cells in HIV infection, as they kill infected cells and produce non-lytic antiviral factors. In lymph 

node, LC activates CD4+ and CD8+ T-cells during its presentation of antigen. Originated from the bone 

marrow, LCs migrate to the peripheral epithelia (skin, mucous membrane) where they play a primordial 

role in the induction of an immune response and are especially active in stimulating naive T 

lymphocytes in the primary response through a specific cooperation with CD4+  T cells after migration 

to proximal lymph node. Also LC can repopulate from local and blood-borne precursors. Similar to other 

myeloid DC, LCs is able to bridge innate and adaptive immunity. They are able to interact directly with 
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microorganisms at the periphery to produce effectors cytokines and initiate or re-stimulate activation 

of T and B cells through antigen presentation [7, 8]. 

The immunocompetent cells which act as antigen-presenting cells, Langerhans cells, can be 

infected. Its infection by HIV is relevant to several reasons. Firstly, LCs of mucosal epithelia may be 

among the first cells to be infected following mucosal HIV expositor and, secondly, LCs may serve as 

reservoir for continued infection of CD4+ T cells, especially in lymph node where epidermal LCs migrate 

following antigenic activation [5].Additionally, many indirect and/or direct experimental data have 

shown that LCs may be a privileged target, reservoir, and vector of dissemination for the HIV for the 

inoculation sites (mucosa) to lymph nodes where the emigrated infected LCs could infect T 

lymphocytes. Apart from many plasma membrane determinants, LCs also expresses CD4+ molecules 

which make them susceptible targets and reservoirs for HIV. Once infected these cells due to their 

localization in areas at risk (skin, mucous membranes), their capacity to migrate from the epidermal 

compartment to lymph nodes, and their ability to support viral replication without major cytopathic 

effects could play a role of vector in the dissemination of virus from the site of inoculation to the lymph 

nodes and thereby contribute to the infection of T lymphocytes [6]. 

Infection of biopsies of human cervical and skin of primate foreskin tissue explants show that LC 

can be infected. Topical infection of human vaginal epithelial explants with HIV strongly suggested that 

LC and non-activated T-lymphocytes are the major cell types expressing HIV antigen in and emigrating 

from the explants and they are often associated during emigration with HIV antigen concentrated at 

their contact region. The latter suggests that LCs is transferring HIV to CD4 T cells. LC may also provided 

a mode of intracellular storage while transporting HIV to CD4 T cells in the sub mucosal lymphoid tissue 

and thence to draining lymph nodes [3]. 

Alternatively, another data suggest that LC has an anti-viral function by capturing HIV for 

degradation and thus initially impairing HIV transmission. This anti-viral function is dependent on viral 

load and LC phenotype, strongly suggesting that the role of LC in HIV transmission is also likely to be 

influenced by local conditions such as viral load, stage of the menstrual cycle, state of vaginal mucus 

and/or inflammation and co-infections. They are also of particular importance because HIV exploits it 

to enhance infection. Therefore, LC are the critical link between virus, CD4+ and CD8+ T-cells.  After 

encountering antigen in the periphery, LC mature and travel to the lymph node (LN). LC maturation 

includes increasing antigen presentation on major histocompatibility complex (MHC) molecules, and 

up regulating co-stimulatory molecules.Mature LC prime CD4+ T-cells to become effector T-helper cells. 

Additionally, LC cross-present exogenous antigens on MHC to prime CD8+ T-cells differentiate into 

cytotoxic T lymphocytes (CTL). Thus it is essential for fighting intracellular pathogens like HIV. In 

contrast, LC may act as one of the primary initial targets for HIV infection. Since it is specialized by 

antigen presentation and belongs to the skin immune system, the virus can associated with it to travel 

to lymphoid tissue, where 98% of T-cells reside. During antigen presentation, it can facilitate infection 

of CD4+ T-cell. As part of the normal immune response, LCs captures virions at the site of transmissions 

in the mucosa (peripheral tissues) and migrates to the lymphoid tissue where they present to naive T 

cells and hence are responsible for large-scale infections of the CD4+ T cells. Generally, as a result of 

these roles of LC, in HIV infections, it plays a dual role of promoting immunity while also facilitating 

infections [2, 8, 9]. 
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1.1. Mathematical Preliminaries 

In this section we present some definitions and theorems required to analyze model systems in our 

research work. 

Theorem 1.1 (Existence and Uniqueness Theorem):  Assume 𝐷 is an open subset of  ℝ× ℝ𝑛 , and 

𝑓:𝐷 ⟶ ℝ𝑛  is continuous. Then for each 𝑡0 ∈ ℝ and 𝑥0 ∈ ℝ
𝑛 , the initial value problem (IVP)  

 𝑥′ = 𝑓(𝑡, 𝑥),   𝑥(𝑡0) = 𝑥0                                                                 (1) 

has a solution 𝑥.  If in addition, 𝑓 has continuous first order partial derivative with respect to 

𝑥1, 𝑥2, … , 𝑥𝑛  in 𝑅
𝑛 ,  then equation  (1) has a unique solution. 

The proof is found on [10]. 

Definition 1.1: Let 𝑓 is a real valued function defined on a domain 𝐷. The function 𝑓 is said to be 

bounded on 𝐷 if and only if there is a positive number M such that |𝑓(𝑥, 𝑦)| ≤ 𝑀 for all (𝑥, 𝑦) ∈ 𝐷. 

Definition 1.2: A domain Ω ⊆ ℝn is said to be positively invariant for the system  
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥) if for 

all 𝑥(𝑡0) ∈ Ω, then 𝑥(𝑡) ∈ Ω  for all 𝑡 ≥  𝑡0.  

Routh-Hurwitz Criteria 

Given a polynomial, 

𝑃(𝜆) = 𝜆𝑛 + 𝑎1𝜆
𝑛−1 + 𝑎2𝜆

𝑛−2 +⋯+ 𝑎𝑛−1 + 𝑎𝑛 

where the coefficients 𝑎𝑖  are real constants, for 𝑖 = 1,2, … , 𝑛, define the 𝑛 Hurwitz matrices using the 

coefficients 𝑎𝑖  of the characteristic polynomial: 

𝐻1 = [𝑎1],    𝐻2 = [
𝑎1 1
𝑎3 𝑎2

] , 𝐻3 = [
𝑎1 1 0
𝑎3 𝑎2 𝑎1
𝑎5 𝑎4 𝑎3

],  and  𝐻𝑛 =

[
 
 
 
 

𝑎1 1 0
𝑎3 𝑎2 𝑎1
𝑎5 𝑎4 𝑎3

  
0 ⋯ 0
0 ⋯ 0
𝑎2 ⋯ 0

        
⋮ ⋮
0 0

      
⋮ ⋮
0 0

        
… 0
… 𝑎𝑛

  
]
 
 
 
 

 

 

where 𝑎𝑗 = 0 if  𝑗 > 0. 

All of the roots of the polynomial 𝑃(𝜆) are negative or have negative real part if and only if the 

determinants of all Hurwitz matrices are positive: det𝐻𝑗 > 0 for all 𝑗 = 1,2,… , 𝑛. 

When 𝑛 =  2, we have 𝑃2(𝜆) = 𝜆
2 + 𝑎1𝜆 + 𝑎2. Hence by Routh-Hurwitz criteria we have det𝐻1  =

 𝑎1  >  0 and  

det𝐻2 = det [
𝑎1 1
0𝑗 𝑎2

] = 𝑎1𝑎2 > 0 

Similarly, when 𝑛 =  5: 

𝑎𝑖 > 0  for 𝑖 = 1, 2,… , 5,
𝑎1𝑎2−𝑎3

𝑎1
> 0, 𝑎3 −

𝑎1(𝑎1𝑎4−𝑎5)

𝑎1𝑎2−𝑎3
> 0, 𝑎1𝑎4 − 𝑎5 − 

𝑎5(𝑎1𝑎2−𝑎3)
2

𝑎3(𝑎1𝑎2−𝑎3)−𝑎1(𝑎1𝑎4−𝑎5)
> 0   (2)       

 

2. MODEL FORMULATION AND ANALYSIS 

Aspects of an organism's defense against viral and bacterial infections and the reaction of immune 

system to infection are the main problems in practical immunology. In addition to antiviral and 

antibacterial defense, the immune system plays a decisive role in tissue incompatibility reactions, 

antitumor immunity, autoimmune diseases, and allergies [6]. Therefore, the formulation of 

mathematical models of the interaction between Langerhans cells and the spread of HIV infection 

provides the tangible understanding on these systems and the HIV transmission with its life-span. 
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2.1. Model Formulation 

In this section, we develop a model which describes the interaction between HIV and Langerhans 

cells as a system of nonlinear ordinary differential equation. For the model we denote by (L) the 

concentration of healthy Langerhans cells (or susceptible Langerhans cells), (𝐿𝐼) the concentration of 

infected Langerhans cells, (T) the concentration of healthy T-cells (or susceptible T-cells), (𝑇𝐼) the 

concentrations of infected T-cells and (V) the concentration of free HIV. 

 

2.1.1. Assumptions of the Model 

The main feature of the model is that the force of infection is obtained by averaging the probability 

of exposure of Langerhans cells and T-cells to HIV. For the model, the following assumptions have been 

taken: 

(i) The amount of healthy Langerhans cells can increase due to newly recruited (produced) 

individuals. In converse, the number can decrease due to the natural death rate and infection 

rate.  

(ii) The susceptible Langerhans cells become infected Langerhans cells when in contact with the 

free virus and it remove from the circulation by both natural death and virus induced death 

rate. 

(iii) The number of healthy (susceptible) T-cells increases due to its constant rate of production 

in bone marrow, but the number can decreases due to its natural death rate, infection rate 

by free virus, infection rate by infected Langerhans cells and infection rate by infected T-cells.  

(iv) The susceptible T-cells become infected T-cells when in contact with free virus and infected 

Langerhans cells; and the infected T-cells remove by its natural death rate and virus induced 

death rate. 

(v) The effective antiviral immune response of healthy T-cells in collaborations of healthy 

Langerhans cell depends on the amount of virus present, the infected tissues and the 

chronicity of the infection. 

(vi) An infected Langerhans cells and infected T-cells release hundreds of virions that can infect 

a healthy Langerhans cells and healthy T-cells. 

The schematic diagram used for the development of model is shown in Figure (1). 
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Figure 1: Model structure 

 

 

Parameter description Symbol 

The constant rate of production of susceptible Langerhans cells 

from the bone marrow 

𝜋𝐿 

Infection rate of susceptible Langerhans cells by free virus 𝛽1 

Natural death rate of Langerhans cells 𝜇 

Death rate of 𝐿𝐼  due to virus (virus induced death rate)  𝛿 

The constant rate of production of susceptible T-cells from the 

bone marrow 

𝜋𝑇 

Natural death rate of T cells 𝜎 

Infection rate of T-cells by free virus 𝛽2 

Infection rate of T-cells by infected Langerhans cells 𝛽3 

Infection rate of T-cells by infected T-cells 𝛽4 

Death rate of infected T-cells due to virus (virus induced death) 𝜌 

Removal rate of free virus 𝛼 

Number of the virus particles assumed to produced by the infected 

Langerhans cells during its life time including any of its daughter 

cells 

𝑁 

Number of the virus particles assumed to produced by the infected 

T-cells during its life time including any of its daughter cells 

𝑀 

 

Table 1: The parameter description and its symbol 
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Depending on the assumptions stated and the schematic diagram of our model structure, we can 

formulate the governing model equations: 

{
 
 
 
 
 

 
 
 
 
 

𝑑𝐿

𝑑𝑡
= 𝜋𝐿 − 𝛽1𝑉𝐿 − 𝜇𝐿

𝑑𝐿𝐼
𝑑𝑡

= 𝛽1𝑉𝐿 − 𝜇𝐿𝐼 − 𝛿𝐿𝐼

𝑑𝑇

𝑑𝑡
= 𝜋𝑇 − 𝜎𝑇 − 𝛽2𝑉𝑇 − 𝛽3𝐿𝐼𝑇 − 𝛽4𝑇𝐼𝑇

𝑑𝑇𝐼
𝑑𝑡

= 𝛽2𝑉𝑇 + 𝛽3𝐿𝐼𝑇 + 𝛽4𝑇𝐼𝑇 − 𝜎𝑇𝐼 − 𝜌𝑇𝐼

𝑑𝑉

𝑑𝑡
= NδLI +MρTI − αV

                                                            (3) 

where 
𝑑𝐿

𝑑𝑡
, 
𝑑𝐿𝐼

𝑑𝑡
, 
𝑑𝑇

𝑑𝑡
, 
𝑑𝑇𝐼

𝑑𝑡
 and 

𝑑𝑉

𝑑𝑡
 denote the rates of change of population densities of concentration of 

susceptible Langerhans cell (L), infected Langerhans cell (𝐿𝐼), susceptible T-cells (T), infected T- cells 

(𝑇𝐼) and free HIV (V) at a time t respectively. The descriptions of symbols of parameters are explained 

in Table 1. We also suppose that 𝜔 = 𝛽2𝑉 + 𝛽3𝐿𝐼 + 𝛽4𝑇𝐼  for the schematic diagram shown on Figure 1. 

 

2.2. Model Analysis 

In this section we study the basic properties of the solutions of system of equation (3). For this, we 

are going to show the existence and uniqueness of the solution, positivity of the solution, steady states 

and stability of the solution. 

 

2.2.1. Existence and Uniqueness 

Theorem 2.1: Suppose that a system of equation (3) is given with non negative initial value 

𝑋(𝑡0) = (𝐿0, 𝐿𝐼0 , 𝑇0, 𝑇𝐼0, 𝑉0).  Then it has a unique solution. 

Proof: We proof Theorem 2.1 by using Theorem 1.1. 

(i) Existence:  

Let (𝑡, 𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 , 𝑉) ⊂ ℝ × ℝ
5. Assume 

 𝑓1(𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 , 𝑉) = 𝜋𝐿 − 𝛽1𝑉𝐿 − 𝜇𝐿 

 𝑓2(𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 , 𝑉) = 𝛽1𝑉𝐿 − 𝜇𝐿𝐼 − 𝛿𝐿𝐼  

 𝑓3(𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 , 𝑉) = 𝜋𝑇 − 𝜎𝑇 − 𝛽2𝑉𝑇 − 𝛽3𝐿𝐼𝑇 − 𝛽4𝑇𝐼𝑇 

𝑓4(𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 , 𝑉) = 𝛽2𝑉𝑇 + 𝛽3𝐿𝐼𝑇 + 𝛽4𝑇𝐼𝑇 − 𝜎𝑇𝐼 − 𝜌𝑇𝐼   and 

𝑓5(𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 , 𝑉) =  NδLI +MρTI − αV 

 

Then all 𝑓𝑖  are continuous in (𝑡, 𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 , 𝑉) ⊂ ℝ × ℝ
5  for 𝑖 = 1, . . . ,5. By Theorem (1.1) for each 𝑡0 ∈

ℝ and (𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 , 𝑉) ∈ ℝ
5 there exist a solution of the system of equation (3) with the given initial 

values. 

(ii) Uniqueness: 

Since all 𝑓𝑖  has a continuous first order partial derivatives with respect to 𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 and V, by 

Theorem (1.1) the system of equation (3) with the given initial value has a unique solution. 
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2.2.2. Invariant Region 

Since we are modeling interaction between Pathogens and healthy cells at cellular level, the 

variables and parameters are assumed to be positive for all 𝑡 ≥  0. The system of equation (3) will 

therefore be analyzed in a suitable feasible region  Ω of biological interest 

Ω = {(𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 , 𝑉) ∈ ℝ+
5 : 𝐿 + 𝐿𝐼 ≤ 

𝜋𝐿
𝜇
, 𝑇 + 𝑇𝐼 ≤ 

𝜋𝑇
𝜎
}.  

We note that the model describes a population and therefore it is very important to prove that 

all the state variables ( 𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼  and V) are non-negative for all time. More precisely if the system of 

equation (3) has non-negative initial data, then the solution will remain inside  Ω for all time 𝑡 ≥  0, i.e., 

the set Ω  is positively invariant. 

Theorem 2.2: The region Ω  is positively invariant. 

Proof: In our model we have three sub populations namely; Langerhans cells, T cells and virus. 

Considering the total population of Langerhans cells only we have 

𝐿𝑡𝑜𝑡 = 𝐿 + 𝐿𝐼  

Hence                       
𝑑𝐿𝑡𝑜𝑡

𝑑𝑡
=
𝑑𝐿

𝑑𝑡
+
𝑑𝐿𝐼

𝑑𝑡
 

= (𝜋𝐿 − 𝛽1𝑉𝐿 − 𝜇𝐿) + (𝛽1𝑉𝐿 − 𝜇 𝐿𝐼 − 𝛿 𝐿𝐼) 

                                          = 𝜋𝐿 − 𝜇(𝐿 + 𝐿𝐼⏟  
𝐿𝑡𝑜𝑡

) − 𝛿 𝐿𝐼 

                                        = 𝜋𝐿 − 𝜇 𝐿𝑡𝑜𝑡 − 𝛿 𝐿𝐼 

                                         ≤   𝜋𝐿 − 𝜇 𝐿𝑡𝑜𝑡  ,        since 𝛿, 𝐿𝐼 ≥  0 
𝑑𝐿𝑡𝑜𝑡
𝑑𝑡

+ 𝜇 𝐿𝑡𝑜𝑡 ≤ 𝜋𝐿                                                                                                                                    (4) 

After multiplying both sides of equation (4) by its integrating factor 𝑒𝜇𝑡, we get 

(𝑒𝜇 𝑡) (
𝑑𝐿𝑡𝑜𝑡
𝑑𝑡

) + (𝑒𝜇 𝑡)𝜇 𝐿𝑡𝑜𝑡 ≤ 𝜋𝐿𝑒
𝜇 𝑡  

 

(𝐿𝑡𝑜𝑡𝑒
𝜇 𝑡)′ ≤   𝜋𝐿𝑒

𝜇 𝑡                                                                                     (5) 

Then integrate both sides of equation (5) with respect to t. 

𝐿𝑡𝑜𝑡𝑒
𝜇 𝑡 ≤

𝜋𝐿

𝜇
 𝑒𝜇 𝑡 + 𝑐1 , where 𝑐1 is a constant of integration. 

  𝐿𝑡𝑜𝑡 ≤ 
𝜋𝐿

𝜇
+ 𝑐1𝑒

−𝜇 𝑡  

At  𝑡 = 0  we have  𝐿𝑡𝑜𝑡 = 𝐿𝑡𝑜𝑡(0) which implies that 𝑐1 = 𝐿𝑡𝑜𝑡(0) −
𝜋𝐿

𝜇
. 

Using this value of 𝑐1  we get: 

𝐿𝑡𝑜𝑡 ≤
𝜋𝐿

𝜇
+(𝐿𝑡𝑜𝑡(0) −

𝜋𝐿

𝜇
)𝑒−𝜇𝑡  

As the number of Langerhans cells increases (i.e.  𝑡 → ∞) we have 

lim
𝑡→∞

𝐿𝑡𝑜𝑡 ≤
𝜋𝐿
𝜇
≔ 𝑚1 

Similarly the total population of T cells is given by 𝑇𝑡𝑜𝑡 = 𝑇 + 𝑇𝐼 

Thus we have  

𝑑𝑇𝑡𝑜𝑡
𝑑𝑡

=
𝑑𝑇

𝑑𝑡
+
𝑑𝑇𝐼
𝑑𝑡

 

= (𝜋𝑇 − 𝜎 𝑇 − 𝛽2𝑉𝑇 − 𝛽3𝐿𝐼𝑇 − 𝛽4𝑇𝐼𝑇) + (𝛽2𝑉𝑇 + 𝛽3𝐿𝐼𝑇 + 𝛽4𝑇𝐼𝑇 − 𝜎 𝑇𝐼 − 𝜌 𝑇𝐼) 
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= 𝜋𝑇 − 𝜎 𝑇 − 𝜎 𝑇𝐼 − 𝜌 𝑇𝐼 = 𝜋𝑇 − 𝜎(𝑇 + 𝑇𝐼⏟  
𝑇𝑡𝑜𝑡

) − 𝜌 𝑇𝐼 

𝑑𝑇𝑡𝑜𝑡

𝑑𝑡
≤ 𝜋𝑇 − 𝜎 𝑇𝑡𝑜𝑡 , since 𝜌 , 𝑇𝐼 ≥ 0 

𝑑𝑇𝑡𝑜𝑡
𝑑𝑡

+ 𝜎 𝑇𝑡𝑜𝑡 ≤ 𝜋𝑇                                                                                           (6) 

Multiply both sides of equation (6) by its integrating factor 𝑒𝜎 𝑡. 

(𝑒𝜎 𝑡)
dTtot
dt

+ (𝑒𝜎 𝑡)σ Ttot ≤ (𝑒
𝜎 𝑡)πT 

( 𝑇𝑡𝑜𝑡𝑒
𝜎 𝑡)′ ≤ 𝜋𝑇𝑒

𝜎 𝑡                                                                       (7) 

Then integrate both sides of equation (7) with respect to t. 

𝑇𝑡𝑜𝑡𝑒
𝜎𝑡 ≤

𝜋𝑇

𝜎
𝑒𝜎𝑡 + 𝑐2 , where 𝑐2 is a constant of integration. 

 𝑇𝑡𝑜𝑡 ≤
𝜋𝑇

𝜎
+ 𝑐2𝑒

−𝜎𝑡 

At 𝑡 = 0 we have 𝑇𝑡𝑜𝑡 = 𝑇𝑡𝑜𝑡(0) so that we have 𝑐2 = 𝑇𝑡𝑜t(0) −
𝜋𝑇

𝜎
. Therefore we have 

𝑇𝑡𝑜𝑡 ≤
𝜋𝑇
𝜎
+ (𝑇𝑡𝑜t(0) −

𝜋𝑇
𝜎
)𝑒−𝜎𝑡  

As the number of T cells increases (i.e. 𝑡 → ∞ ) we have  

lim
𝑡→∞

𝑇𝑡𝑜𝑡 ≤
𝜋𝑇
𝜎
≔ 𝑚2 

Now, since  0 ≤  𝐿𝑡𝑜𝑡 ≤ 𝑚1  and  0 ≤  𝑇𝑡𝑜𝑡 ≤ 𝑚2, we have 𝐿𝐼 ≤  𝑚1 and 𝑇𝐼 ≤ 𝑚2. 

Thus the equations of the rate of change of virus sub population  
𝑑𝑉

𝑑𝑡
= 𝑁𝛿 𝐿𝐼 +𝑀𝜌𝑇𝐼 − 𝛼𝑉 canbe 

rewritten as:                           
𝑑𝑉

𝑑𝑡
≤  𝑁𝛿𝑚1 +𝑀𝜌𝑚2 − 𝛼 𝑉 

                                          
𝑑𝑉

𝑑𝑡
+ 𝛼𝑉 ≤  𝑁𝛿𝑚1 +𝑀𝜌𝑚2                                                    (8) 

Again to solve the first order linear differential inequality (8), we need to find it's integrating factor and 

solve it as we solve for 𝐿𝑡𝑜𝑡  and  𝑇𝑡𝑜𝑡. Therefore, its solution is given as 

𝑉(𝑡) ≤
𝑁 𝛿𝑚1 +𝑀𝜌 𝑚2

𝛼
+ (𝑉(0) −

𝑁 𝛿𝑚1 +𝑀𝜌 𝑚2

𝛼
) 𝑒−𝛼𝑡  

As time progress we have lim
𝑡→∞

𝑉(𝑡) ≤
𝑁 𝛿𝑚1+𝑀𝜌 𝑚2

𝛼
: = 𝑚3  

Now, since all solutions of  𝐿𝑡𝑜𝑡, 𝑇𝑡𝑜𝑡  and V are bounded by  𝑄 where 𝑄 = max {𝑚1, 𝑚2, 𝑚3}, we have  

𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 , 𝑉 ≤  𝑄 

Therefore, all the solutions remain in the region Ω  and thus we have proved that the region  Ω is 

positively invariant. 

Theorem 2.3:  All the solutions of system of equation (3) are bounded.  

Proof: In proof of Theorem 2.2 we have shown that  

lim
𝑡→∞

𝐿𝑡𝑜𝑡 ≤
𝜋𝐿

𝜇
≔𝑚1, lim

𝑡→∞
𝑇𝑡𝑜𝑡 ≤

𝜋𝑇

𝜎
≔ 𝑚2 and lim

𝑡→∞
𝑉(𝑡) ≤

𝑁 𝛿𝑚1+𝑀𝜌 𝑚2

𝛼
: = 𝑚3 

Then, we have  

 0 ≤  𝐿 ≤ 𝑚1, 0 ≤  𝐿𝐼 ≤ 𝑚1 , 0 ≤  𝑇 ≤  𝑚2, 0 ≤  𝑇𝐼 ≤  𝑚2  and 0 ≤  𝑉 ≤  𝑚3. 

Therefore the Theorem is proved. 
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2.2.3. Steady States and Stability 

In this section, we are going to determine the equilibrium point and stability properties of the system 

of equation (3). 

Proposition 2.4: The reasonable initial conditions of the system (3) are:    

 𝐿0 =  𝐿(0) =
𝜋𝐿
𝜇
, 𝐿𝐼0 = 𝐿𝐼(0) =  0, 𝑇0 = 𝑇(0) =  

𝜋𝑇
𝜎
, 𝑇𝐼0 = 𝑇𝐼(0) = 0 , 𝑉0 = 𝑉(0) = 0 

Proof: In the absence of virus, since 𝐿𝐼 = 0, 𝑇𝐼 = 0  and 𝑉 = 0, the rates of change of population 

densities of the system of equation (3) can be reduced to 

{

𝑑𝐿

𝑑𝑡
= 𝜋𝐿 − 𝜇𝐿

𝑑𝑇

𝑑𝑡
= 𝜋𝑇 − 𝜎𝑇

                                                       (9) 

Now, to get the steady state value of equation (3) in the absence of virus, we equate the right hand side 

of equation (9) to 0 as follows.  

𝜋𝐿 − 𝜇𝐿 = 0 and 𝜋𝑇 − 𝜎𝑇 = 0 which implies  𝐿 =
𝜋𝐿

𝜇
  and  𝑇 =

𝜋𝑇

𝜎
 . 

Thus, the reasonable initial conditions for infection by free virus of equation (3) can be  

𝐿(0) = 𝐿0 =
𝜋𝐿
𝜇
, 𝐿𝐼(0) = 0, 𝑇(0) = 𝑇0 =

𝜋𝑇
𝜎
, 𝑇𝐼(0) = 0, 𝑉(0) = 𝑉0 = 0 

and the equilibrium point of uninfected system is (
𝜋𝐿

𝜇
, 0,

𝜋𝑇

𝜎
, 0,0). 

 

Endemic Equilibrium (EE) 

 

In the presence of virus we can find the critical point, endemic equilibrium point, of the system of 

equation (3) as follows:  

Suppose that 

𝑓1(𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 , 𝑉) = 𝜋𝐿 − 𝛽1𝑉𝐿 − 𝜇𝐿      (10) 

 𝑓2(𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 , 𝑉) = 𝛽1𝑉𝐿 − 𝜇𝐿𝐼 − 𝛿𝐿𝐼       (11) 

 𝑓3(𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 , 𝑉) = 𝜋𝑇 − 𝜎𝑇 − 𝛽2𝑉𝑇 − 𝛽3𝐿𝐼𝑇 − 𝛽4𝑇𝐼𝑇                (12) 

𝑓4(𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 , 𝑉) = 𝛽2𝑉𝑇 + 𝛽3𝐿𝐼𝑇 + 𝛽4𝑇𝐼𝑇 − 𝜎𝑇𝐼 − 𝜌𝑇𝐼   (13) 

𝑓5(𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 , 𝑉) =  NδLI +MρTI − αV      (14) 

 

Then we solve for 𝑓1 = 0, 𝑓2 = 0, 𝑓3 = 0, 𝑓4 = 0 and 𝑓5 = 0 simultaneously. 

From equation (10) and equation (11) we have 

𝜋𝐿
𝛽1𝑉 + 𝜇

=
(𝜇 + 𝜎)𝐿𝐼
𝛽1𝑉

 

which can be rearranged as  

𝜋𝐿𝛽1𝑉 − (𝜇 + 𝛿)𝐿𝐼𝛽1𝑉 = (𝜇 + 𝛿)𝜇𝐿𝐼                                                    (15) 

Again, from equation (12) and equation (13), we have 

𝜋𝑇
𝜎 + 𝛽2𝑉 + 𝛽3𝐿𝐼 + 𝛽4𝑇𝐼

=
(𝜎 + 𝜌)𝑇𝐼

𝛽2𝑉 + 𝛽3𝐿𝐼 + 𝛽4𝑇𝐼
 

After rearranging it, we obtain  

𝜋𝑇𝛽2𝑉 − (𝜎 + 𝜌)𝛽2𝑇𝐼𝑉 = (𝜎 + 𝜌)𝑇𝐼(𝜎 + 𝛽3𝐿𝐼 + 𝛽4𝑇𝐼) − 𝜋𝑇𝛽3𝐿𝑇𝐼 − 𝜋𝑇𝛽4𝑇𝐼                        (16) 
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From equation (14, we have  

𝑉 =
𝑁𝛿𝐿𝐼+𝑀𝜌𝑇𝐼

𝛼
                                                   (17) 

Substituting equation (17) in equation (15) and bringing like term together gives: 

𝐿𝐼 [
𝑁𝜋𝐿𝛽1𝛿

𝛼
− 𝜇(𝜇 + 𝛿)] + 𝑇𝐼 [

𝑀𝜋𝐿𝛽1𝜌

𝛼
] = 𝐿𝐼

2 [
𝑁𝛽1𝛿 (𝜇 + 𝛿)

𝛼
] + 𝐿𝐼𝑇𝐼 [

𝑀𝛽1𝜌(𝜇 + 𝛿)

𝛼
]. 

 If we let 𝑎 =
𝑁𝜋𝐿𝛽1𝛿

𝛼
− 𝜇(𝜇 + 𝛿), 𝑏 =

𝑀𝜋𝐿𝛽1𝜌

𝛼
, 𝑐 =

𝑁𝛽1𝛿 (𝜇+𝛿)

𝛼
 and 𝑑 =

𝑀𝛽1𝜌(𝜇+𝛿)

𝛼
 we will have, 𝑎𝐿𝐼 + 𝑏𝑇𝐼 =

𝑐𝐿𝐼
2 + 𝑑𝐿𝐼𝑇𝐼        (18) 

Similarly, insert equation (17) into (16) and collect like term together. We obtain 

𝑒𝐿𝐼 + 𝑓𝑇𝐼 = 𝑔𝑇𝐼𝐿𝐼 + ℎ𝑇𝐼
2.      (19) 

Where 𝑒 =
𝑁𝜋𝑇𝛽2𝛿

𝛼
+ 𝜋𝑇𝛽3, 𝑓 =

𝑀𝜋𝑇𝛽2𝜌

𝛼
− 𝜎(𝜎 + 𝜌) + 𝜋𝑇𝛽4, 𝑔 =

𝑁𝛽2𝜌 (𝜎+𝜌)

𝛼
+ 𝛽3(𝛿 + 𝜌) and  ℎ =

𝑀𝛽2𝜌 (𝛿+𝜌)

𝛼
+ (𝛿 + 𝜌)𝛽4.  

Now, after rearranging and combining together the equations (18) and (19) we will obtain equation (20) 

below. 

 𝑇𝐼
4[𝑔𝑐ℎ2 − 𝑑ℎ𝑔2] + 𝑇𝐼

3[2ℎ𝑔(𝑑𝑒 − 𝑐𝑓) − ℎ𝑔(𝑑𝑒 − 𝑔𝑎) − 𝑔2(𝑔𝑏 − 𝑑𝑓)] + 𝑇𝐼
2[𝑔𝑐𝑓2 + 

(𝑑𝑒 − 𝑔𝑎)(ℎ𝑒 + 𝑓𝑔) − 𝑑ℎ𝑒2 + 2𝑒𝑔(𝑔𝑏 − 𝑑𝑓)] + 𝑇𝐼[𝑓𝑒(𝑑𝑒 − 𝑔𝑎) − 𝑒
2(𝑔𝑏 − 𝑑𝑓)] = 0      (20) 

 

Suppose 

 𝑘 = 𝑔𝑐ℎ2 − 𝑑ℎ𝑔2,   𝑙 = 2ℎ𝑔(𝑑𝑒 − 𝑐𝑓) − ℎ𝑔(𝑑𝑒 − 𝑔𝑎) − 𝑔2(𝑔𝑏 − 𝑑𝑓),    𝑚 = 𝑔𝑐𝑓2 + (𝑑𝑒 − 𝑔𝑎)(ℎ𝑒 +

𝑓𝑔) − 𝑑ℎ𝑒2 + 2𝑒𝑔(𝑔𝑏 − 𝑑𝑓)  and 𝑛 = 𝑓𝑒(𝑑𝑒 − 𝑔𝑎) − 𝑒2(𝑔𝑏 − 𝑑𝑓). 

 

Then, equation (20) become 

𝑘𝑇𝐼
4 + 𝑙𝑇𝐼

3 +𝑚𝑇𝐼
2 + 𝑛𝑇𝐼 = 0 

but 𝑇𝐼 = 0 is the trivial solution. Therefore, we will have the cubic polynomial 

𝑘𝑇𝐼
3 + 𝑙𝑇𝐼

2 +𝑚𝑇𝐼 + 𝑛 = 0 . 

We can solve this cubic polynomial using mat lab and only take the real and positive  𝑇𝐼 and neglect the 

rest. So, we get  

𝑇𝐼 =
(−27𝑘8𝑛+9𝑘7𝑙𝑚−2𝑘6𝑙3+3√3√27𝑘16𝑛2−18𝑘15𝑙𝑚𝑛+4𝑘15𝑚3+4𝑘14𝑙3𝑛−𝑘14𝑙2𝑚2)

1/3

3× 21/3𝑘3
−

2
1
3(2187𝑘5𝑐−729𝑘4𝑙2)

2187𝑘3(−27𝑘8𝑛+9𝑘7𝑙𝑚−2𝑘6𝑙𝑚+3√3√27𝑘16𝑛2−18𝑘15𝑙𝑚𝑛+4𝑘15𝑚3+4𝑘14𝑙3𝑛−𝑘14𝑙2𝑚2)
1/3

−
𝑙

3𝑘

                                  (21) 

Using this solutions of 𝑇𝐼, we can solve for 𝐿, 𝐿𝐼 , 𝑇 and V and obtain 

𝐿𝐼 =
𝑇𝐼(ℎ𝑇𝐼−𝑓)

𝑒−𝑔𝑇𝐼
, 𝑉 =

𝑁𝛿 𝐿𝐼+𝑀𝜌 𝑇𝐼

𝛼
, 𝐿 =

𝜋𝐿

𝛽1𝑉+𝜇
, 𝑇 =

(𝜎+𝜌)𝑇𝐼

𝛽2𝑉+𝛽3𝐿𝐼+𝛽4𝑇𝐼
                                (22) 

Generally, we have seen that the system of equation (3) has two steady states: 

The uninfected steady states (VFE)  (𝐸0 =
𝜋𝐿

𝜇
, 0,

𝜋𝑇

𝜎
, 0,0) and the infected steady state (EE) 𝐸∗ =

(𝐿∗, 𝐿𝐼
∗ , 𝑇∗, 𝑇𝐼

∗, 𝑉∗) where 𝐿∗, 𝐿𝐼
∗ , 𝑇∗, 𝑇𝐼

∗, 𝑉∗ are values of  𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 , 𝑉 given in equation (21) and (22) 

above. 

2.2.4. Local Stability of Virus Free Equilibrium (VFE) 
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To discuss the local stability of virus free equilibrium, (𝐸0 =
𝜋𝐿

𝜇
, 0,

𝜋𝑇

𝜎
, 0,0), we consider the linearized 

system of  equation (3) at 𝐸0 . 

Now we find the Jacobean matrix from equation (10)-(14) as follows. 

𝐽(𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 , 𝑉) =

(

 
 
 
 
 
 
 
 
 

𝜕𝑓1
𝜕𝐿
𝜕𝑓2
𝜕𝐿
𝜕𝑓3
𝜕𝐿

𝜕𝑓1
𝜕𝐿𝐼
𝜕𝑓2
𝜕𝐿𝐼
𝜕𝑓3
𝜕𝐿𝐼

 

𝜕𝑓4
𝜕𝐿
𝜕𝑓5
𝜕𝐿

𝜕𝑓4
𝜕𝐿𝐼
𝜕𝑓5
𝜕𝐿𝐼

    

𝜕𝑓1
𝜕𝑇
𝜕𝑓2
𝜕𝑇

𝜕𝑓1
𝜕𝑇𝐼
𝜕𝑓2
𝜕𝑇𝐼

𝜕𝑓1
𝜕𝑉
𝜕𝑓2
𝜕𝑉

𝜕𝑓3
𝜕𝑇
𝜕𝑓4
𝜕𝑇
𝜕𝑓5
𝜕𝑇

𝜕𝑓3
𝜕𝑇𝐼
𝜕𝑓4
𝜕𝑇𝐼
𝜕𝑓5
𝜕𝑇𝐼

𝜕𝑓3
𝜕𝑉
𝜕𝑓4
𝜕𝑉
𝜕𝑓5
𝜕𝑉)

 
 
 
 
 
 
 
 
 

 

=

(

 
 

−𝛽1𝑉 − 𝜇
𝛽1𝑉 
0

0
−(𝜇 + 𝛿)
−𝛽3𝑇 

0
0 

𝛽3𝑇
𝑁𝛿 

     

0
0

−𝜎 − 𝛽2𝑉 − 𝛽3𝐿𝐼 − 𝛽4𝑇𝐼

0
0

−𝛽4𝑇

𝛽2𝑉 + 𝛽3𝐿𝐼 + 𝛽4𝑇𝐼
0 

 𝛽4𝑇 − (𝜎 + 𝜌)
𝑀𝜌

   

−𝛽1𝐿
𝛽1𝐿
 −𝛽2𝑇
 𝛽2𝑇
 −𝛼 )

 
 

               (23) 

The Jacobean matrix of virus free equilibrium 𝐸0 is 

𝐽 (
𝜋𝐿
𝜇
, 0,
𝜋𝑇
𝜎
, 0,0) =

(

 
 
 
 
 
 
 −𝜇 0
0 −(𝜇 + 𝛿)

 0
−𝛽3𝜋𝑇
𝜎

0           0        
−𝛽1𝜋𝐿
𝜇

0          0           
𝛽1𝜋𝐿
𝜇

      −𝜎            
−𝛽4𝜋𝑇
𝜎

         
−𝛽2𝜋𝑇
𝜎

0       
𝛽3𝜋𝑇
𝜎

0   𝑁𝛿

          0       
𝛽4𝜋𝑇
𝜎

− (𝜎 + 𝜌)   
𝛽2𝜋𝑇
𝜎

         0 𝑀𝜌 −𝛼 )

 
 
 
 
 
 
 

 

 

Then, the linearized system is: 

 

(

 
 
 
 
 

𝑑𝑢

𝑑𝑡
𝑑𝑣

𝑑𝑡
𝑑𝑤

𝑑𝑡
𝑑𝑥

𝑑𝑡
𝑑𝑦

𝑑𝑡)

 
 
 
 
 

= 𝐽 (
𝜋𝐿

𝜇
, 0,

𝜋𝑇

𝜎
, 0,0)

(

 
 

𝑢
𝑣
𝑤
𝑥
𝑦)

 
 
=

(

 
 
 
 
 
−𝜇 0
0 −(𝜇 + 𝛿)

 0
−𝛽3𝜋𝑇

𝜎

0           0        
−𝛽1𝜋𝐿

𝜇

0          0           
𝛽1𝜋𝐿

𝜇

      −𝜎            
−𝛽4𝜋𝑇

𝜎
         

−𝛽2𝜋𝑇

𝜎

0       
𝛽3𝜋𝑇

𝜎

0   𝑁𝛿

          0       
𝛽4𝜋𝑇

𝜎
− (𝜎 + 𝜌)   

𝛽2𝜋𝑇

𝜎

         0 𝑀𝜌 −𝛼 )

 
 
 
 
 

⏟                                    
=𝐴

(

 
 

𝑢
𝑣
𝑤
𝑥
𝑦)

 
 

 

If we let  

𝑎11 = 𝜇, 𝑎15 = 𝑎25 =
𝛽1𝜋𝐿
𝜇
, 𝑎22 = 𝜇 + 𝛿 , 𝑎32 = 𝑎42 =

𝛽3𝜋𝑇
𝜎

, 𝑎33 = 𝜎, 𝑎34 =
𝛽3𝜋𝑇
𝜎

, 

𝑎35 = 𝑎45 =
𝛽2𝜋𝑇
𝜎

, 𝑎44 = 𝜎 + 𝜌 −
𝛽4𝜋𝑇
𝜎

, 𝑎52 = 𝑁𝛿 , 𝑎54 = 𝑀𝜌 , 𝑎55 = 𝛼 



INTERNATIONAL JOURNAL ON ORANGE TECHNOLOGIES (IJOT)     e-ISSN: 2615-814 
Volume: 01 Issue: 02 | Nov-Dec 2019          www.researchparks.org                        p-ISSN: 2615-7071 

 

© 2019, IJOT       |       Research Parks Publishing (IDEAS Lab)                                                                        | Page 12 
 

, we will have   

𝐴 =

(

 
 

−𝑎11 0
0 −𝑎22
 0  −𝑎32

0 0 −𝑎15
0  0 𝑎15

−𝑎33 −𝑎34 −𝑎35
0      𝑎32
0       𝑎52

0   −𝑎44     𝑎35
0      𝑎54 −𝑎55 )

 
 

 

Then, the Eigen polynomial of the coefficient matrix A is obtained as follows. 

|𝐴 − 𝜆𝐼 = 0 ⇔
|
|

−𝑎11 − 𝜆 0
0 −𝑎22 − 𝜆
 0  −𝑎32

0 0 −𝑎15
0  0 𝑎15

−𝑎33 − 𝜆 −𝑎34 −𝑎35
   0               𝑎32
   0              𝑎52

         0   −𝑎44 − 𝜆  𝑎35
        0      𝑎54 −𝑎55 − 𝜆

|
|
= 0 

𝜆5 + 𝑏1𝜆
4 + 𝑏2𝜆

3 + 𝑏3𝜆
2 + 𝑏4𝜆 + 𝑏5 = 0                                                                            (24) 

Where 

 𝑏1 = 𝑎11 + 𝑎12 + 𝑎33 + 𝑎44 + 𝑎55 

𝑏2 = 𝑎11(𝑎22 + 𝑎33 + 𝑎44 + 𝑎55) + 𝑎22𝑎33 + (𝑎22 + 𝑎33)(𝑎44 + 𝑎55) + 𝑎44𝑎55 + 𝑎54𝑎35 − 𝑎15𝑎52 

𝑏3 = 𝑎11𝑎22𝑎33 + 𝑎11(𝑎22 + 𝑎33)(𝑎44 + 𝑎55) + 𝑎11𝑎44𝑎55 + 𝑎11𝑎54𝑎35 − 𝑎11𝑎15𝑎52 + 𝑎22𝑎33(𝑎44
+ 𝑎55 ) + 𝑎44 𝑎55(𝑎22 + 𝑎33) + 𝑎54𝑎35(𝑎22 + 𝑎33) − 𝑎15𝑎32𝑎54 + 𝑎15𝑎52(𝑎44 − 𝑎33)  

𝑏4 = 𝑎11𝑎22𝑎33(𝑎44 + 𝑎55) + 𝑎11𝑎44𝑎55(𝑎22 + 𝑎33) + 𝑎11𝑎54𝑎35(𝑎22 + 𝑎33) − 𝑎11𝑎15𝑎32𝑎54  

+ 𝑎11𝑎15𝑎52(𝑎44 − 𝑎33) + 𝑎22𝑎33𝑎44𝑎55 + 𝑎22𝑎33𝑎54𝑎35 − 𝑎15𝑎32𝑎33𝑎54 + 𝑎15𝑎52𝑎33𝑎44 

𝑏5 = 𝑎11𝑎22𝑎33(𝑎44𝑎55 + 𝑎54𝑎35) + 𝑎11𝑎15𝑎33(𝑎52𝑎44 − 𝑎32𝑎54) 

 

By Routh-Hurwitz criterion, it follows that all eigenvalues of equation (24) have negative real parts if 

and only if it satisfies: 

𝑏1 > 0 for 𝑖 = 1,… ,5,
𝑏1𝑏2−𝑏3

𝑏1
> 0, 𝑏3 −

𝑏1(𝑏1𝑏4−𝑏5)

𝑏1𝑏2−𝑏3
> 0                                               (25) 

Note that equation (25) was obtained in section (1.7). If condition (25) holds, the virus free equilibrium  

𝐸0 = (
𝜋𝐿

𝜇
, 0,

𝜋𝑇

𝜎
, 0,0) is locally asymptotically stable.  

 

2.2.5. Stability of Endemic Equilibrium 

In similar fashion to the local stability of virus free equilibrium, the local stability of endemic 

equilibrium, 𝐸∗(𝐿∗, 𝐿𝐼
∗ , 𝑇∗, 𝑇𝐼

∗, 𝑉∗), is obtained by linearizing system of equation (3) at 𝐸∗. Using equation 

(23), the Jacobian matrix of 𝐸∗ is  

𝐽(𝐸∗) =

(

 
 

−𝛽1𝑉
∗ − 𝜇

𝛽1𝑉
∗ 

0

0
−(𝜇 + 𝛿)
−𝛽3𝑇

∗ 
0
0 

𝛽3𝑇
∗

𝑁𝛿 

     

0
0

−𝜎 − 𝛽2𝑉
∗ − 𝛽3𝐿𝐼

∗ − 𝛽4𝑇𝐼
∗

0
0

−𝛽4𝑇
∗

𝛽2𝑉
∗ + 𝛽3𝐿𝐼

∗ + 𝛽4𝑇𝐼
∗

0 

 𝛽4𝑇
∗ − (𝜎 + 𝜌)
𝑀𝜌

   

−𝛽1𝐿
∗

𝛽1𝐿
∗

 −𝛽2𝑇
∗

 𝛽2𝑇
∗

 −𝛼 )

 
 
. 

The linearized system of equation (3) is  
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(

 
 
 
 
 

𝑑𝑢′

𝑑𝑡
𝑑𝑣′

𝑑𝑡
𝑑𝑤′

𝑑𝑡
𝑑𝑥′

𝑑𝑡
𝑑𝑦′

𝑑𝑡 )

 
 
 
 
 

=

(

 
 

−𝛽1𝑉
∗ − 𝜇

𝛽1𝑉
∗ 

0

0
−(𝜇 + 𝛿)
−𝛽3𝑇

∗ 
0
0 

𝛽3𝑇
∗

𝑁𝛿 

     

0
0

−𝜎 − 𝛽2𝑉
∗ − 𝛽3𝐿𝐼

∗ − 𝛽4𝑇𝐼
∗

0
0

−𝛽4𝑇
∗

𝛽2𝑉
∗ + 𝛽3𝐿𝐼

∗ + 𝛽4𝑇𝐼
∗

0 

 𝛽4𝑇
∗ − (𝜎 + 𝜌)
𝑀𝜌

   

−𝛽1𝐿
∗

𝛽1𝐿
∗

 −𝛽2𝑇
∗

 𝛽2𝑇
∗

 −𝛼 )

 
 

⏟                                                      
=𝐵

(

 
 

𝑢′
𝑣′
𝑤′
𝑥′
𝑦′)

 
 

                 

(26) 

Then 

  |𝐵 − 𝜆| = 0 ⇔  
|
|

−b11 − λ
b21
0

0
−b22 − λ
−b32

0
0

b32
b52

    

0
0

−b33 − λ

0
0

−b34
b43
0

b44 − λ
b54

   

−b15
b15
−b35
b32

−b55 − λ

|
|
= 0. 

 

Where b11 = β1V
∗ + μ, b15 = β1L

∗, b21 = β1V
∗, b22 = μ + δ, b25 = b15, b32 = β3T

∗, b33 = σ+ β2V
∗ +

β3LI
∗ + β4TI

∗, b34 = β4T
∗, b35 = β2T

∗, b42 = b32, b43 = β2 V
∗ + β3LI

∗ + β4TI
∗,  b44 = β4T

∗ − (σ +

ρ), b45 = b35, b52 = Nδ, b54 = Mρ, b55 = α  

This implies 

𝜆5 + 𝑐1𝜆
4 + 𝑐2𝜆

3 + 𝑐3𝜆
2 + 𝑐4𝜆 + 𝑐5 = 0                                                          (27) 

Where   

𝑐1 = 𝑏33 + 𝑏55 + 𝑏22 + 𝑏11 − 𝑏44  

𝑐2 = 𝑏22(𝑏33 + 𝑏55 − 𝑏44) + 𝑏33(𝑏55 − 𝑏44) − 𝑏44𝑏55 − 𝑏54𝑏35 + 𝑏34𝑏43 − 𝑏15𝑏52 + 𝑏11(𝑏22 + 𝑏33 −

𝑏44 + 𝑏55) 𝑐3 = 𝑏22𝑏33(𝑏55 − 𝑏44) + 𝑏22(𝑏34𝑏45 − 𝑏44𝑏55 − 𝑏54𝑏35) − 𝑏33(𝑏44𝑏55 + 𝑏54𝑏35) +

𝑏34𝑏43𝑏55 − 𝑏15𝑏33𝑏52  − 𝑏32𝑏54𝑏15 + 𝑏15𝑏52𝑏44 − 𝑏11𝑏22(𝑏44 − 𝑏33 − 𝑏55) − 𝑏11𝑏33(𝑏44 − 𝑏55) −

𝑏11𝑏44𝑏55 − 𝑏11𝑏54𝑏35 + 𝑏11𝑏34𝑏43 − 𝑏11𝑏15𝑏52 + 𝑏21𝑏15𝑏52 

𝑐4 = 𝑏22𝑏34𝑏43𝑏55 − 𝑏22𝑏33(𝑏44𝑏55 + 𝑏54𝑏_35) − 𝑏15𝑏43(𝑏34𝑏52 − 𝑏32𝑏54) + 𝑏15𝑏33(𝑏52𝑏44 − 𝑏32𝑏54)

+ 𝑏11𝑏22𝑏33(𝑏55 − 𝑏44 + 𝑏11𝑏22(𝑏34𝑏43 − 𝑏44𝑏55 − 𝑏54𝑏35) − 𝑏11𝑏33(𝑏44𝑏55 + 𝑏54𝑏35)

+ 𝑏11𝑏34𝑏43𝑏55 − 𝑏11𝑏15𝑏33𝑏52 − 𝑏11𝑏32𝑏54𝑏15 + 𝑏11𝑏52𝑏44 + 𝑏21𝑏15(𝑏33𝑏52 + 𝑏33𝑏54
− 𝑏52𝑏44) 

𝑐5 = 𝑏11𝑏22(𝑏34𝑏43𝑏55 − 𝑏33(𝑏44𝑏55 + 𝑏54𝑏35)) − 𝑏11𝑏15𝑏43(𝑏34𝑏52 − 𝑏32𝑏54) − 𝑏11𝑏15𝑏33(𝑏32𝑏54
− 𝑏52𝑏44) + 𝑏15𝑏21(𝑏43(𝑏34𝑏52 − 𝑏32𝑏54) + 𝑏33(𝑏32𝑏54 − 𝑏52𝑏_44)) 

By Routh-Hurwitz criterion described in section (1.7), it follows that all eigenvalues of equation (27) 

have negative real parts if and only if it satisfies: 

𝑐1  >  0 , 𝑐5  >  0 ,
𝑐1𝑐2 − 𝑐3

𝑐1
> 0, 𝑐3 −

𝑐1(𝑐1𝑐4 − 𝑐5)

𝑐1𝑐2 − 𝑐3

> 0, 𝑐1𝑐4 − 𝑐5 −
𝑐5(𝑐1𝑐2 − 𝑐3)

2

𝑐3(𝑐1𝑐2 − 𝑐3) − 𝑐1(𝑐1𝑐4 − 𝑐5)
                 (28) 

Therefore, the endemic equilibrium point  𝐸∗ = (𝐿∗, 𝐿𝐼
∗ , 𝑇∗, 𝑇𝐼

∗, 𝑉∗) is locally asymptotically stable if 

condition (28) holds. 

 

2.2.6. Global Stability  
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The global stability of obtained equilibrium can be analyzed by transforming the system of equations 

into a linear system and then choosing a suitable Lyapunov function to analyze each equilibrium point. 

By letting 

𝐿 = 𝐿∗ + 𝑥1 , 𝐿𝐼 = 𝐿𝐼
∗ + 𝑥2 , 𝑇 = 𝑇

∗ + 𝑥3, 𝑇𝐼 = 𝑇𝐼
∗ + 𝑥4, 𝑉 = 𝑉

∗ + 𝑥5 where 𝑥1, 𝑥2, 𝑥3, 𝑥4 and 𝑥5 are small 

perturbations about 𝐿∗, 𝐿𝐼
∗ , 𝑇∗, 𝑇𝐼

∗ and 𝑉∗ respectively, the system  of equation (3) is turned into a linear 

system which is of the form  𝑥𝑖̇ = 𝐽(𝐸0)𝑥𝑖, where 𝐽(𝐸0) is the Jacobian matrix of equations (3) and 𝑖 =

1, . . . , 5. Thus, the linear system of equation (3) is  

𝑑𝑥1
𝑑𝑡

=  −(𝛽1𝑉
∗ + 𝜇)𝑥1 − 𝛽1𝐿

∗𝑥5 

𝑑𝑥2
𝑑𝑡

= 𝛽1𝑉
∗𝑥1 − (𝜇 + 𝛿)𝑥2 + 𝛽1𝐿

∗𝑥5 

𝑑𝑥3
𝑑𝑡

= −𝛽3𝑇
∗𝑥2 − (𝜎 + 𝛽2𝑉

∗ + 𝛽3𝐿𝐼
∗ + 𝛽4𝑇𝐼

∗)𝑥3 − 𝛽4𝑇
∗𝑥4 − 𝛽2𝑇

∗𝑥5 

𝑑𝑥4
𝑑𝑡

= 𝛽3𝑇
∗𝑥2 + (𝛽2𝑉

∗ + 𝛽3𝐿𝐼
∗ + 𝛽4𝑇𝐼

∗)𝑥3 + (𝛽4𝑇
∗ − (𝜎 + 𝜌))𝑥4 + 𝛽2𝑇

∗𝑥5 

𝑑𝑥5
𝑑𝑡

= 𝑁𝛿 𝑥2 +𝑀𝜌 𝑥4 − 𝛼 𝑥5  

Theorem: The equilibrium 𝐸0(𝐿
∗, 0, 𝑇∗, 0,0) = (

𝜋𝐿

𝜇
, 0,

𝜋𝑇

𝜎
, 0,0) is globally stable provided that 

 𝛿(𝑁𝐿∗ − 1) ≤ 𝜇 and 𝜌(𝑀𝑇∗ − 1) ≤ 𝜎.  

Proof:  

We define a Lyapunov function as 𝑍(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) =
𝑥1

𝐿∗
+
𝑥2

𝐿∗
+
𝑥3

𝑇∗
+
𝑥4

𝑇∗
+ 𝑥5, where 𝐿∗,  𝑇∗ are 

components of the equilibrium point 𝐸0(𝐿
∗, 0, 𝑇∗, 0,0) = (

𝜋𝐿

𝜇
, 0,

𝜋𝑇

𝜎
, 0,0). Since 

 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ∈ ℝ+
5 , 𝑍(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) is a positive definite function. Differentiating Z with respect 

to time t we get   
𝑑𝑍

𝑑𝑡
=
𝜕𝑍

𝜕𝑥1

𝑑𝑥1
𝑑𝑡

+
𝜕𝑍

𝜕𝑥2

𝑑𝑥2
𝑑𝑡

+
𝜕𝑍

𝜕𝑥3

𝑑𝑥3
𝑑𝑡

+
𝜕𝑍

𝜕𝑥4

𝑑𝑥4
𝑑𝑡

+
𝜕𝑍

𝜕𝑥5

𝑑𝑥5
𝑑𝑡

= [−(𝛽1𝑉
∗ + 𝜇)𝑥1 − 𝛽1𝐿

∗𝑥5]
1

𝐿∗
+ [𝛽1𝑉

∗𝑥1 − (𝜇 + 𝛿)𝑥2 + 𝛽1𝐿
∗𝑥5]

1

𝐿∗

+ [−𝛽3𝑇
∗𝑥2 − (𝜎 + 𝛽2𝑉

∗ + 𝛽3𝐿𝐼
∗ + 𝛽4𝑇𝐼

∗)𝑥3 − 𝛽4𝑇
∗𝑥4 − 𝛽2𝑇

∗𝑥5]
1

𝑇∗

+ [𝛽3𝑇
∗𝑥2 + (𝛽2𝑉

∗ + 𝛽3𝐿𝐼
∗ + 𝛽4𝑇𝐼

∗)𝑥3 + (𝛽4𝑇
∗ − (𝜎 + 𝜌))𝑥4 + 𝛽2𝑇

∗𝑥5]
1

𝑇∗

+ [𝑁𝛿 𝑥2 +𝑀𝜌 𝑥4 − 𝛼 𝑥5] 

= −
𝜇

𝐿∗
𝑥1 − (

𝜇 + 𝜎

𝐿∗
− 𝑁𝜎) 𝑥2 −

𝜎

𝑇∗
𝑥3 − (

𝜎 + 𝜌

𝑇∗
−𝑀𝜌)𝑥4 − 𝛼𝑥5  

Choosing  
𝜇+𝜎

𝐿∗
−𝑁𝜎 ≥ 0,

𝜎+𝜌

𝑇∗
−𝑀𝜌,                                           (29) 

We have   
𝑑𝑍

𝑑𝑡
= −

𝜇

𝐿∗
𝑥1 − (

𝜇 + 𝜎

𝐿∗
− 𝑁𝜎) 𝑥2 −

𝜎

𝑇∗
𝑥3 − (

𝜎 + 𝜌

𝑇∗
−𝑀𝜌)𝑥4 − 𝛼𝑥5 ≤ 0 

Then, equation (29) can be rearranged as 𝛿 (𝑁𝐿∗ − 1) ≤ 𝜇 , 𝜌(𝑀𝑇∗ − 1) ≤ 𝜎 so 𝐸0 = (𝐿
∗, 0, 𝑇∗, 0,0) is 

Lyapunov stable. Therefore, the theorem is proved. 



INTERNATIONAL JOURNAL ON ORANGE TECHNOLOGIES (IJOT)     e-ISSN: 2615-814 
Volume: 01 Issue: 02 | Nov-Dec 2019          www.researchparks.org                        p-ISSN: 2615-7071 

 

© 2019, IJOT       |       Research Parks Publishing (IDEAS Lab)                                                                        | Page 15 
 

 

3. NUMERICAL SIMULATION 

In previous sections we have investigated analytically the properties of proposed model. Now, we shall 

investigate numerically the results of proposed model by means of numerical simulation. We solve our 

system of equation (3) by using an iterative method with Runge-Kutta fourth order scheme. 

 

3.1. Implementation of Runge-Kutta Fourth Order Method for Numerical Solution 

Firstly, we give a brief description of the Runge-Kutta method of order four (RK4) for the system of 

equations (3). We first develop  a sets of k's  used to make predictions of the dependent variable at the 

midpoint of the interval. These are then employed to make predictions at the end of the interval that 

are used to develop the values of k's at the end interval 𝑘4. Finally, the k's values are combined into a 

set of increment functions and brought back to the beginning to make the final prediction [1]. The 

following illustrates these approaches. 

We start with initial conditions 𝐿(𝑡0) = 𝐿0, 𝐿𝐼(𝑡0) = 𝐿𝐼0, 𝑇(𝑡0) = 𝑇0, 𝑇𝐼(𝑡0) = 𝑇𝐼0, 𝑉(𝑡0) = 𝑉0 . 

We assume that the values  𝐿𝑖, 𝐿𝐼𝑖, 𝑇𝑖, 𝑇𝐼𝑖 and  𝑉𝑖   has been computed. Now we calculate  

𝐿𝑖+1, 𝐿𝐼𝑖+1, 𝑇𝑖+1, 𝑇𝐼𝑖+1 and  𝑉𝑖+1 by Runge-Kutta fourth order method as: 

𝐿𝑖+1 = 𝐿𝑖 +
1

6
(𝑘11 + 2(𝑘21 + 𝑘31) + 𝑘41) 

𝐿𝐼𝑖+1 = 𝐿𝐼𝑖 +
1

6
(𝑘12 + 2(𝑘22 + 𝑘32) + 𝑘42) 

𝑇𝑖+1 = 𝑇𝑖 +
1

6
(𝑘13 + 2(𝑘23 + 𝑘33) + 𝑘43) 

𝑇𝐼𝑖+1 = 𝑇𝐼𝑖 +
1

6
(𝑘14 + 2(𝑘24 + 𝑘34) + 𝑘44) 

𝑉𝑖+1 = 𝑉𝑖 +
1

6
(𝑘15 + 2(𝑘25 + 𝑘35) + 𝑘45) 

 

With, 

𝑘1𝑗 = ℎ𝑓𝑗(𝑡0, 𝐿0, 𝐿𝐼0, 𝑇0, 𝑇𝐼0 , 𝑉0) 

𝑘2𝑗 = ℎ𝑓𝑗(𝑡0 +
ℎ

2
, 𝐿𝑖 +

𝑘11

2
, 𝐿𝐼𝑖 +

𝑘12

2
, 𝑇𝑖 +

𝑘13

2
, 𝑇𝐼𝑖 +

𝑘14

2
, 𝑉𝑖 +

𝑘15

2
) 

𝑘3𝑗 = ℎ𝑓𝑗(𝑡0 +
ℎ

2
, 𝐿𝑖 +

𝑘21

2
, 𝐿𝐼𝑖 +

𝑘22

2
, 𝑇𝑖 +

𝑘23

2
, 𝑇𝐼𝑖 +

𝑘24

2
, 𝑉𝑖 +

𝑘25

2
) 

𝑘4𝑗 = ℎ𝑓𝑗(𝑡0 + ℎ, 𝐿𝑖 + 𝑘31, 𝐿𝐼𝑖 + 𝑘32, 𝑇𝑖 + 𝑘33, 𝑇𝐼𝑖 + 𝑘34, 𝑉𝑖 + 𝑘35)  where 𝑓𝑗 's are equations given in (10-

14) for 𝑗 = 1, . . . ,5. 

This gives us the next approximate values of 𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼  and V. Then t is set to 𝑡0 + ℎ and the values of 

𝐿, 𝐿𝐼 , 𝑇, 𝑇𝐼 and V are iterated with the above formula. 

3.2. Values of Parameters and Initial Variables 

Choosing variable and parameter values characteristic at the cellular level is difficult. In our model, if 

measurements have been attempted, the values taken may not be as accurate as we need for 

quantitative predictions. Thus one role of modeling is to point out where further quantitative 

measurements can improve our understanding of the AIDS disease process. For example, the number 

of CD4+ T cells in the peripheral blood is approximately 1000/𝑚𝑚3, although it fluctuates from time to 
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time depending on the total lymphocyte count [13]. As it is common in the clinical literature, we shall 

report all cell numbers per cubic milliliter. For our simulations, we declare the numerical parameters 

and variable by using similar procedure as for T cells above. We list these values in Table (2) and using 

these values we get Figure (2). 

Parameters Approximated Values 

Initial population size of healthy Langerhans cells (L) 800mm−3 

Initial population size of infected Langerhans cells (𝐿𝐼) 0.033mm−3 

Initial healthy T-cells (T) population size 1000𝑚𝑚−3 

Initial population size of infected T-cells (𝑇𝐼) 0.045𝑚𝑚−3 

Initial HIV population size (V) 5mm−3 

The constant rate of production of susceptible Langerhans cells 

from the bone marrow ( 𝜋𝐿)  

 19mm−3 

Infection rate of susceptible Langerhans cells by free virus 

(𝛽1}) 

0.002 𝑑𝑎𝑦−1 

Natural death rate of Langerhans cells (𝜇) 0.002 day−1  

Death rate of 𝐿𝐼  due to virus ( 𝛿 )  0.007 day−1  

The constant rate of production of susceptible T-cells from the 

bone marrow (𝜋𝑇) 

15mm−3 

Natural death rate of T cells (𝜎)   0.001 day−1 

Infection rate of T-cells by free virus (𝛽2)   0.0002 day−1 

Infection rate of T-cells by infected Langerhans cells (𝛽3) 0.0004 day−1 

Infection rate of T-cells by infected T-cells (𝛽4)  0.003 day−1 

Death rate of infected T-cells due to virus (𝜌 ) 0.008 day−1 

Number of the virus particles assumed to produced by the 

infected Langerhans cells during its life time including any of 

its daughter cells(N)  

2 day−1 

Number of the virus particles assumed to produced by the 

infected T-cells during its life time including any of its 

daughter cells(M)  

4 day−1 

virus death rate (𝛼)  0.8 day−1 

 Table 2: The approximated values of variable and parameters declared in the numerical simulation 

 

Figure 2 illustrates the dynamics of the disease for Healthy Langerhans cells, infected Langerhans cells, 

Healthy T-cells, infected T-cells and Free Virus with increasing time. The population of susceptible 

Langerhans cells decreases as time increases due to the presence of virus as shown in Figure 2(a). As 

we can see from Figure 2(b), (d) and (e), the Population of infected Langerhans cells, Infected T-cells 

and Free Viruses increases when time increases. On Figure 2(c), we observe that the population size of 

susceptible T-cells increases starting from its initial population size   since the healthy T-cells defense 

viral infection, but as time increases it start to decrease. This is due to structure HIV virus. That means, 

HIV is an enveloped retrovirus. When it leaves a host cell it takes a part of that cell and duplicates itself 

along with host cells. Therefore, it starts to multiply itself within a short period of time including its 
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daughter cells so that it wins healthy T-cells. For the sake of easy comparison, we can observe all of this 

dynamical interaction on one plane in Figure 2(f). 

 
Figure 2: Dynamics of the model showing the virus progression in an increasing time t 

4. CONCLUSION 

Infectious diseases are a threat for our modern society due to the increased population density on Earth, 

so being able to understand and predict the dynamics of infectious diseases is extremely important. 

In this research work, we have developed a model used to explain the interaction between  host cells 

and HIV infection. The model was developed in accordance with previous models in the literature 

review, and in accordance of the biologically reasonable assumptions and parameters. It was shown 

that, the model has a biologically meaningful region in which we had carried out all our model analysis. 

Also, it was shown that the solution of the model systems exists and unique, positively invariant and 

non negative. The stability properties of both virus free and endemic equilibrium were determined; as 

the stability nature of solutions will assist us to determine the extent to which the disease will disappear 

from the population.  In order to insights into the HIV/AIDS dynamics at cellular level, the numerical 

simulations of the model are carried   out. 

In addition, in this work we have improved the understanding of the interaction between Langerhans 

cells and HIV infection by explaining the most crucial point take place in developing our model system. 

Furthermore, by using the language of mathematics we have provided the tangible understanding on 

the viral pathogenesis and its life-span for the immunologist, for the researchers and for the clinicians 

to propose the new powerful tools on the stimulation of the immune system in order to increase its 

efficiency in the struggle against antigen invasion. 

Generally, this study assists us to consolidate our knowledge on the dynamics of HIV - host cells 
interaction and it concretely simplifies the complexity to understand the interplay between the virus 
and host cells. At the future, it will be helpful to obtain good estimates for introduced parameter values 
especially, the reactivation rate of individually infected cells. Our work may require additional 
information to improve these findings by using future research studies, extensions, modifications and 
analysis of the model. Moreover, based on the parameter values, the equilibrium point may be created 
or destroyed or their stability may change. To understand these changes the model requires bifurcation 
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analysis by varying the values of these parameters. Thus, as a future prospect, it would be important to 
distinguish more clearly, on these analyses and provide a more reasonable fact on the interplay between 
Langerhans cells and HIV infections. 
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