Joint Operation of a Cross member with Multi-Hollow Floor Slabs

  • Khamrokulov Ulugbek Damirovich Doctoral student of Samarkand State Architectural and Civil-Engineering Institute
Keywords: reinforced concrete, crossbar, multi-hollow slab, short-term load, bearing capacity, camber

Abstract

The article presents the results of testing a reinforced concrete crossbar and a fragment of a ceiling with prefabricated multi-hollow slabs for a short-term load. The bearing capacity and deflections of beams are compared without and taking into account joint work with hollow-core slabs. Nowadays, when designing multi-storey frame buildings, their staged erection, and, accordingly, loading is not taken into account in the calculations. In addition, in monolithic reinforced concrete frames, the joint work of prefabricated multi-hollow reinforced concrete slabs with crossbars is not taken into account. This is explained by the fact that the experimental data on taking into account the joint operation of crossbars with multi-track slabs is not sufficient. To evaluate the joint operation of crossbars with multi-track slabs, an experimental study of the model of a prefabricated-monolithic crossbar on the auction of short-term loads was carried out.

References

1. Khamrakulov U.D., doctoral student (PhD), SamSACI. The stress-deformed analysis of multi-storey building frame elements adjusted its construction and loading stage. International Journal For Innovative Engineering and Management Research. Volume 09, Issue 10, Pages: 189-193.
2. Nikonorov R. M. Sovmestnaya soprotivlyayemost, deformativnost zhelezobetonnykh elementov perekrytiya sborno-monolitnykh karkasov s ploskimi plitami i skrytymi rigelyami //Moskva. – 2008.
3. Varlamov, Andrey Arkadyevich, and Olga Vyacheslavovna Nikitina. "Analiz eksperimentalnykh dannykh issledovaniya raboty sborno-monolitnogo perekrytiya s novym variantom shponochnogo styka." Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Stroitelstvo i arkhitektura 15.3 (2015).
4. BOSAKOV, Sergey Viktorovich, Aleksandr Ivanovich MORDICh, and Valeriy Nikolayevich SIMBIRKIN. "K povysheniyu nesushchey sposobnosti i zhestkosti perekrytiy, obrazovannykh mnogopustotnymi plitami." Promyshlennoye i grazhdanskoye stroitelstvo 4 (2017): 30-36.
5. Khamrokulov U.D., Usmanov V.F. Sinchli binolarning rigellarini bosқichma-bosқich yuklanishini ҳisobga olib loyiҳalash. «Memorchilik va қurilish muammolari», № 1 son, 2019, 44-48 b.
6. Shpeter A. K. i dr. MNOGOPUSTOTNAYa PLITA PEREKRYTIYa PONIZhENNOY VYSOTY S OGRANIChITELYaMI. – 2012.
7. Karyakin A. A. i dr. Ispytaniye naturnogo fragmenta sborno-monolitnogo karkasa sistemy Arkos s ploskimi perekrytiyami //Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Stroitelstvo i arkhitektura. – 2009. – №. 35 (168).
8. Huang Z., Burgess I. W., Plank R. J. Modeling membrane action of concrete slabs in composite buildings in fire. II: Validations //Journal of Structural Engineering. – 2003. – T. 129. – №. 8. – S. 1103-1112.
9. Tena-Colunga A., Chinchilla-Portillo K. L., Juárez-Luna G. Assessment of the diaphragm condition for floor systems used in urban buildings //Engineering Structures. – 2015. – T. 93. – S. 70-84.
10. Asiz A., Smith I. Connection system of massive timber elements used in horizontal slabs of hybrid tall buildings //Journal of Structural Engineering. – 2011. – T. 137. – №. 11. – S. 1390-1393.
11. Kovalov, Andrii, et al. "Experimental and computer researches of ferroconcrete floor slabs at high-temperature influences." Materials Science Forum. Vol. 968. Trans Tech Publications Ltd, 2019.
12. Crawford R., Ward H. S. Determination of the natural periods of buildings //Bulletin of the Seismological Society of America. – 1964. – T. 54. – №. 6A. – S. 1743-1756.
13. Chua Y. S., Liew J. Y. R., Pang S. D. Modelling of connections and lateral behavior of high-rise modular steel buildings //Journal of Constructional Steel Research. – 2020. – T. 166. – S. 105901.
14. Zyma O. E. et al. Works execution organization at reconstruction and renovation of buildings after the fire with usage of slabs lifting method //International Journal of Engineering & Technology. – 2018. – T. 7. – №. 2.23. – S. 242-246.
15. Khamrokulov U.D. Rigelning kўpbўshliқli temirbeton plitalar bilan birgalikda ishlashi. «Arkhitektura va shaҳarsozlik: ўtmish, bugun, kelazhak». Respublika ilmiy va ilmiy-amaliy anzhuman, 2021, 435-438 b.
16. Abdlebasset Y. M., Sayed-Ahmed E. Y., Mourad S. A. Seismic analysis of high-rise buildings with transfer slabs: state-of-the-art-review //Electronic Journal of Structural Engineering. – 2016. – T. 16. – №. 1. – S. 38-51.
17. Johnson R. P. Composite Structures of Steel and Concrete: beams, slabs, columns and frames for buildings. – John Wiley & Sons, 2018.
18. Doǧangün A. Performance of reinforced concrete buildings during the May 1, 2003 Bingöl Earthquake in Turkey //Engineering Structures. – 2004. – T. 26. – №. 6. – S. 841-856.
19. Wang J., Wang W. Macromodeling Approach and Robustness Enhancement Strategies for Steel Frame Buildings with Composite Slabs against Column Loss //Journal of Structural Engineering. – 2022. – T. 148. – №. 1. – S. 04021238.
Published
2022-02-24
How to Cite
Damirovich, K. U. (2022). Joint Operation of a Cross member with Multi-Hollow Floor Slabs. International Journal of Human Computing Studies, 4(2), 63-67. https://doi.org/10.31149/ijhcs.v4i2.2762
Section
Articles