The Subject of This Study is the Multiphase Flow of a Compressible Liquid in a Porous Medium, Specifically Focusing on Classification
Abstract
Modeling the flow of two-phase compressible fluids through porous media is very pertinent to a broad spectrum of physical and technical applications. The study focuses on reservoir modeling and oil and gas production, which require the use of advanced numerical methods to ensure efficiency. The objective is to achieve a numerical solution to this model by integrating finite element and finite volume approaches. This involves generating velocity values at the boundary of the finite volume grid cells based on point pressure values at KE nodes.
References
[2] S. Mishra G. Coclite, K. Karlsen, N. Risebro; A hyperbolic-elliptic model of two-phase flow in porous media-existence of entropy solutions., Int. J. Numer. Anal. Mod. 9 (2012), no. 3, 562–583.
[3] W. Kinzelbach; Groundwater modelling: An introduction with sample programs in basic, Developments in Water Science, Elsevier Science, 1986.
[4] Кременецкий М.И., Ипатов А.И. Гидродинамические и промыслово-технологические исследования скважин. - М.: МАКС Пресс, 2008. - 476 с
[5] S. Mantica L. Bergamaschi and G. Manzini; A mixed finite element–finite volume formulationof the black-oil model, SIAM Journal on Scientific Computing 20 (1998), no. 3, 970–997.
[6] R. J. LeVeque; Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002.
[7] F. Monkeberg; Finite volume methods for fluidflow in porous media, (2012).
[8] D. W. Peaceman; Fundamentals of numerical reservoir simulation, Elsevier, 1977.
[9] Зяблицкая Ю. А. Анализ и интерпретация гидродинамических исследований для двухфазного потока (вода-нефть) // Известия ТПУ. 2010. №1. URL: https://cyberleninka.ru/article/n/analiz-i-interpretatsiya-gidrodinamicheskih-issledovaniy-dlya-dvuhfaznogo-potoka-voda-neft (дата обращения: 07.07.2022).
[10] Bustanov Kh. A. Mathematical modeling of two-phase compressible fluid filtration in a porous medium, Journal of Mechanical and Production Engineering (JMPE) ISSN (P): 2278-3512 ISSN (E): 2278-3520 Vol. 12, Issue 2, Dec 2022, 1-10
[11] Bustanov Kh. A. Basic methods, models and calculations for modeling the filtration of a two-phase compressible liquid in a porous medium, Journal of Mechanical and Production Engineering (JMPE) ISSN (P):2278-3512; ISSN (E):2278-3520 Vol. 13, Issue 1, Jun 2023, 13-24
[12] A. Schroll, A. Tveito; Local existence and stability for a hyperbolic-elliptic system modelingtwo-phase reservoir flow, Electron. J. Differential Equations 2000 (2000), no. 4, 1–28 (eng).