ON HOMOMORPHISM AND ISOMORPHISM OF ALGEBRAIC STRUCTURES

  • Mamadaliev BM KSPI
Keywords: Group, ring

Abstract

The concepts of algebraic structure extension, algebraic structure homomorphism and isomorphism were introduced, rules, ideas were considered.

References

1. Nazarov R. N, Toshpolatov B. T, Dusumbetov A. D. Algebra and number theory. T., Part I, 1993, Part II, 1995
2. Toshpolatov B. T, Dusumbetov A. D, Kulmatov A. Q. Algebra and number theory. Text of lectures. T., 2001 Parts 1-5
3. R. Iskanderov, R. Nazarov. Algebra and number theory. Parts I-II. T., Teacher, 1979
4. Kulikov L. Yes. Algebra i theory chisel. M., V. sh 1979 г.
5. Nechaev V. I. Chislov i e sistemy M . Prosveshchenii, 1975 г.
6. Van der Waerden. Algebra M. _ 1976
7. Kostrykin. I. A. _ Vvedenie v algebru M. Nauka, 1977
8. Mamadaliev B. M. Tadzhimatova Kh.B. The turning point of a function graph and its division Into types . 2021
Published
2023-12-15
How to Cite
[1]
Mamadaliev BM 2023. ON HOMOMORPHISM AND ISOMORPHISM OF ALGEBRAIC STRUCTURES. International Journal on Integrated Education. 6, 12 (Dec. 2023), 104-106. DOI:https://doi.org/10.17605/ijie.v6i12.5066.